Skip to main content

Primality and Factoring

  • Chapter

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 114))

Abstract

There are many situations where one wants to know if a large number n is prime. For example, in the RSA public key cryptosystem and in various cryptosystems based on the discrete log problem in finite fields, we need to find a large “random” prime. One interpretation of what this means is to choose a large odd integer \(n_{0}\) using a generator of random digits and then test \(n_{0}, n_{0}+2, \dotsc\) for primality until we obtain the first prime which is \(\ge n_{0}\). A second type of use of primality testing is to determine whether an integer of a certain very special type is a prime. For example, for some large prime f we might want to know whether \(2^{f}-1\) is a Mersenne prime. If we’re working in the field of \(2^{f}\) elements, we saw that every element ≠ 0, 1 is a generator of \({\pmb{\text{F}}}^{*}_{2^{f}}\) if (and only if) \(2^{f}-1\) is prime (see Exercise 13(a) of §11.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for § V.1

  1. L. M. Adleman, C. Pomerance, and R. S. Rumely, “On distinguishing prime numbers from composite numbers,” Annals of Mathematics‚ Vol. 117 (1983), 173–206.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Cohen and H. W. Lenstra, Jr., “Primality testing and Jacobi sums,” Mathematics of Computation‚ Vol. 42 (1984), 297–330.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. D. Dixon, “Factorization and primality tests,” American Mathematical Monthly‚ Vol. 91 (1984), 333–352.

    Article  MATH  Google Scholar 

  4. E. Kranakis, Primality and Cryptography‚ John Wiley & Sons, 1986.

    MATH  Google Scholar 

  5. G. L. Miller, “Riemann’s hypothesis and tests for primality,” Proceedings of the Seventh Annual ACM Symposium on the Theory of Computing‚ 234–239.

    Google Scholar 

  6. C. Pomerance, “Recent developments in primality testing,” The Mathematical Intelligencer‚ Vol. 3 (1981), 97–105.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Pomerance, “The search for prime numbers,” Scientific American‚ Vol. 247 (1982), 136–147.

    Article  Google Scholar 

  8. M. O. Rabin, “Probabilistic algorithms for testing primality,” Journal of Number Theory‚ Vol. 12 (1980), 128–138.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Solovay and V. Strassen, “A fast Monte Carlo test for primality,” SIAM Journal for Computing‚ Vol. 6 (1977), 84–85 and erratum‚ Vol. 7 (1978), 118.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Wagon, “Primality testing,” The Mathematical Intelligencer‚ Vol. 8, No. 3 (1986), 58–61.

    Article  MATH  MathSciNet  Google Scholar 

References for § V.2

  1. W. D. Blair, C. B. Lacampagne and J. L. Selfridge, “Factoring large numbers on a pocket calculator,” American Math. Monthly‚ Vol. 93 (1986), 802–808.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. P. Brent, “An improved Monte Carlo factorization algorithm,” BIT, Vol. 20 (1980), 176–184.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. P. Brent and J. M. Pollard, “Factorization of the eighth Fermat number,” Math, of Computation, Vol. 36 (1981), 627–630.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. K. Guy, “How to factor a number,” Proceedings of the 5th Manitoba Conference on Numerical Mathematics (1975), 49–89.

    Google Scholar 

  5. J. M. Pollard, “A Monte Carlo method for factorization,” BIT, Vol. 15 (1975), 331–334.

    Article  MATH  MathSciNet  Google Scholar 

References for § V.3

  1. L. E. Dickson, History of the Theory of Numbers‚ Vol. 1, Chelsea, 1952, p. 357.

    Google Scholar 

  2. M. Kraitchik, Théorie des Nombres‚ Vol. 2, Gauthier-Villars, 1926.

    MATH  Google Scholar 

  3. R. S. Lehman, “Factoring large integers,” Mathematics of Computation‚ Vol. 28 (1974), 637–646.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Pomerance, “Analysis and comparison of some integer factoring algorithms,” Computational Methods in Number Theory‚ Part I, Mathematisch Centrum (Amsterdam), 1982.

    Google Scholar 

References for § V.4

  1. H. Davenport, The Higher Arithmetic‚ 5th ed., Cambridge University Press, 1982.

    MATH  Google Scholar 

  2. D. Knuth, The Art of Computer Programming‚ Vol. 2, Addison-Wesley, 1973.

    Google Scholar 

  3. D. H. Lehmer and R. E. Powers, “On factoring large numbers,” Bull. Amer. Math. Soc., Vol. 37 (1931), 770–776.

    Article  MathSciNet  Google Scholar 

  4. M. A. Morrison and J. Brillhart, “A method of factoring and the factorization of F7,” Mathematics of Computation, Vol. 29 (1975), 183–205.

    MATH  MathSciNet  Google Scholar 

  5. C. Pomerance and S. S. Wagstaff, Jr., “Implementation of the continued fraction integer factoring algorithm,” Proceedings of the 12th Winnipeg Conference on Numerical Methods and Computing‚ 1983.

    Google Scholar 

  6. M. C. Wunderlich, “A running time analysis of Brillhart’s continued fraction factoring method,” Number Theory, Carbondale 1979‚ Springer Lecture Notes Vol. 751 (1979), 328–342.

    Article  MathSciNet  Google Scholar 

  7. M. C. Wunderlich, “Implementing the continued fraction factoring algorithm on parallel machines,” Mathematics of Computation Vol. 44 (1985), 251–260.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Koblitz, N. (1987). Primality and Factoring. In: A Course in Number Theory and Cryptography. Graduate Texts in Mathematics, vol 114. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0310-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0310-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0312-1

  • Online ISBN: 978-1-4684-0310-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics