References

  • Helena E. Nusse
  • James A. Yorke
  • Eric J. Kostelich
Part of the Applied Mathematical Sciences book series (AMS, volume 101)

Keywords

Lyapunov Exponent Chaotic Motion Nonlinear Dynamical System Strange Attractor Numerical Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R.H. and CD. Shaw (1992), Dynamics: The Geometry of Behavior, Addison-Wesley Publishing CompanyGoogle Scholar
  2. Alexander, J.C. (1988, Ed.), Dynamical Systems, Proceedings of the Special Year at the University of Maryland 1986–87, Lecture Notes in Math. 1342, Springer-Verlag, Berlin, New York, etc.Google Scholar
  3. Anderson, P.W., K.J. Arrow, and D. Pines (1988), The Economy as an EvolvingComplex System, Addison-Wesley Publishing Comp., Inc.Google Scholar
  4. Arnold, V.l. (1983), Geometric Methods in the Theory of Ordinary Differential Equations, Grundlehren der mathematischen Wissenschaften 250, Springer-Verlag, Berlin, New York, etc.CrossRefGoogle Scholar
  5. Aronson, J. (1990), CHAOS: A SUN-based program for analyzing chaotic systems, Computers in Physics 4, 408–417MATHGoogle Scholar
  6. Arrowsmith, D.K. and CM. Place (1990), An Introduction to Dynamical Systems, Cambridge University Press, CambridgeMATHGoogle Scholar
  7. Baker, G.L. and J.P. Gollub (1990), Chaotic Dynamics, an introduction, Cambridge University Press, CambridgeMATHGoogle Scholar
  8. Barnsley, M.F. (1988), Fractals everywhere, Academic Press, Inc. San DiegoMATHGoogle Scholar
  9. Barnsley, M.F. and S.G. Demko (1986, Eds.) Chaotic Dynamics and Fractals, Academic Press, Inc.Google Scholar
  10. Bedford, T. and J. Swift (1988, Eds.), New Directions in Dynamical Systems, London Math. Soc. Lect. Notes Series 127, Cambridge Univ. Press, CambridgeGoogle Scholar
  11. Bélair, J. and S. Dubuc (1991, Eds.) Fractal Geometry and Analysis, Proceedings of the NATO Advanced Study Institute and Séminaire de mathématiques supérieures on Fractal Geometry and Analysis, Montréal, Canada 1989, Kluwer Academic Publishers, Dordrecht,Boston, and LondonMATHGoogle Scholar
  12. Benedicks, M. and L. Carleson (1991), The dynamics of the Hénon map, Annals of Mathematics 133, 73–169MathSciNetMATHCrossRefGoogle Scholar
  13. Benettin, G., L. Galgani, and J.-M. Strelcyn (1976), Kolmogorov entropy and numerical experiments, Physical Review A 14, 2338–2345CrossRefGoogle Scholar
  14. Benettin, G., L. Galgani, A. Giorgilli, and J.-M. Strelcyn (1980), Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, Part 1: Theory, Meccanica 15, 9–20; Part 2: Numerical application, Ibid., 21–29Google Scholar
  15. Bergé, P., Y. Pomeau and C. Vidal (1986), Order within Chaos. Towards a deterministic approach to turbulence, (Translated from french by L.Tuckerman.) John Wiley & Sons, New YorkMATHGoogle Scholar
  16. Berry, M.V., I.C. Percival and N.O. Weiss (1987, Eds.), Dynamical Chaos,The Royal Society, LondonGoogle Scholar
  17. Bowen, R. (1978), On Axiom A Diffeomorphisms, Reg. Conf. Ser. Math. Amer. Math. Soc. 35Google Scholar
  18. Bowen, R. (1975), Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics 470, Springer-Verlag Berlin, New York, etc.Google Scholar
  19. Broer, H.W., F. Dumortier, S.J. van Strien, and F. Takens (1991), Structures in Dynamics, Finite Dimensional Deterministic Studies, North Holland, AmsterdamMATHGoogle Scholar
  20. Campbell, L., and W. Garnett (1969), The life of James Clerk Maxwell, The Sources of Science, No. 85, Johnson Reprint Corporation, New York and LondonGoogle Scholar
  21. Campbell, D.K. (1990, Ed.), Chaos -XAOC, Soviet-American perspectives on nonlinear science. American Institute of Physics, New YorkMATHGoogle Scholar
  22. Campbell, D.K., R.E. Ecke, and J.M. Hyman(1992, Eds.) Nonlinear Science, the Next Decade, Special Issues of Physica D, M.I.T. Press, CambridgeMATHGoogle Scholar
  23. Casdagli, M. and S. Eubank (1992, Eds.) Nonlinear Modeling and Forecasting, Proceedings Volume XII, Santa Fe Institute Studies in the Sciences of Complexity, Addison-Wesley Publishing Company, Redwood City, CaliforniaGoogle Scholar
  24. Casti, J. (1989), Alternate Realities, Mathematical Models of Nature and Man, A wiley-Interscience Publication, John Wiley & Sons, New YorkMATHGoogle Scholar
  25. Cherbit, G. (1991, Ed.), Fractals, Non-integral dimensions and applications John Wiley & Sons, Chichester, New York, etc.MATHGoogle Scholar
  26. Collet, P. and J.-P. Eckmann (1980), Iterated maps on the Interval as Dynamical Systems, Birkhäuser, BaselMATHGoogle Scholar
  27. Crilly, A.J., R.A. Earnshaw, and H. Jones (1991, Eds.), Fractals and Chaos, Springer-Verlag, New YorkGoogle Scholar
  28. Cvitanovich, P. (1984), Universality in Chaos, A reprint selection, Adam Hilger Ltd., BristolGoogle Scholar
  29. Dendrinos, D.S. and M. Sonis (1990), Chaos and Socio-Spatial Dynamics, Applied Mathematical Sciences 86, Springer-Verlag, Berlin, New York, etcCrossRefGoogle Scholar
  30. Devaney, R., and Z. Nitecki (1979), Shift automorphisms in the Henon mapping, Commun. Math. Phys. 67, 137–146MathSciNetMATHCrossRefGoogle Scholar
  31. Devaney, R.L. (1989), An introduction to Chaotic Dynamical Systems, Second edition, Addison-Wesley Publishing Company, Inc.Google Scholar
  32. Doedel, E.J. and J.P. Kernévez (1986), AUTO: Software for continuation and bifurcation problems in ordinary differential equations, Applied Mathematics, California Institute of Technology, Pasadena, CA 91125Google Scholar
  33. Eckmann, J.-P. (1981), Roads to turbulence in dissipative dynamical systems, Rev. Modern Phys. 53, 643–654MathSciNetMATHCrossRefGoogle Scholar
  34. Eckmann, J.-P. and D. Ruelle (1985), Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57, 617–656MathSciNetCrossRefGoogle Scholar
  35. Ermentrout, B. (1990), Phaseplane, Version 3.0, Brooks-ColeGoogle Scholar
  36. Falconer, K.J. (1985), The Geometry of Fractal Sets, Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  37. Falconer, K.J. (1990), Fractal geometry, John Wiley & Sons, Chichester, etc.MATHGoogle Scholar
  38. Fatou, P. (1919, 1920), Sur les equations fonctionelles, Bull. Soc. Math. de France 47, 161–271; 48, 33–94, 208–314MathSciNetGoogle Scholar
  39. Feder, J. (1988), Fractals, Plenum Press, New York and LondonMATHGoogle Scholar
  40. Feigenbaum, M.J. (1978), Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19, 25–52MathSciNetMATHCrossRefGoogle Scholar
  41. Feigenbaum, M.J. (1979), The universal metric properties of nonlinear transformations, J. Stat. Phys. 21, 669–706MathSciNetMATHCrossRefGoogle Scholar
  42. Feit, S.D. (1978), Characteristic exponents and strange attractors, Commun. Math. Physics 61, 249–260MathSciNetMATHCrossRefGoogle Scholar
  43. Franceschini, W. and L. Russo (1981), Stable and unstable manifolds of the Hénon mapping, J. Stat. Phys. 25, 757–769MathSciNetMATHCrossRefGoogle Scholar
  44. Georges, J. and D. Johnson (1992), Dynamical Systems Software, Software for the Apple Macintosh computer, Addison Wesley Publishing CompanyGoogle Scholar
  45. Glass, L. and M.C. Mackey (1988), From Clocks to Chaos, The Rhythms of Life, Princeton University Press, PrincetonMATHGoogle Scholar
  46. Gleick, J. (1990), Chaos, The Software, AutodeskGoogle Scholar
  47. Grebogi, C, E. Ott, and J.A. Yorke (1983), Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation, Phys. Rev. Lett. 50, 935–938, Erratum 51, 942MathSciNetCrossRefGoogle Scholar
  48. Grebogi, C., E. Ott, S. Pelikan, and J.A. Yorke (1984), Strange attractors that are not chaotic, Physica D 11, 261–268MathSciNetCrossRefGoogle Scholar
  49. Grebogi, C, E. Ott, and J.A. Yorke (1985), Attractors on an N-torus: Quasiperiodicity versus chaos, Physica D 15, 354–373MathSciNetMATHCrossRefGoogle Scholar
  50. Grebogi, C, E. Ott, and J.A. Yorke (1987), Basin boundary metamorphoses: Changes in accessible boundary orbits, Physica D 24, 243–262MathSciNetMATHCrossRefGoogle Scholar
  51. Guckenheimer, J., J. Moser and S.E. Newhouse (1980), Dynamical Systems, CIME Lectures Bressanone, Italy 1978, Birkhäuser, BostonGoogle Scholar
  52. Guckenheimer, J. and P. Holmes (1983), Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Applied Mathematical Sciences 42, Springer-Verlag, Berlin, New York, etc.Google Scholar
  53. Guckenheimer, J. and S. Kim (1990), KAOS, Mathematical Sciences Institute Technical Report, Cornell University, Ithaca, NY, (A program for Sunworkstations)Google Scholar
  54. Gulick, D. (1992), Encounters with Chaos, McGraw-Hill, Inc., New YorkGoogle Scholar
  55. Gumowski, I. and C. Mira (1980), Dynamique Chaotique, Cepadues Editions ToulouseGoogle Scholar
  56. Gumowski, I. and C. Mira (1980), Recurrences and Discrete Dynamic Systems, Lecture Notes in Mathematics 809. Springer-Verlag, Berlin, New York,etc.Google Scholar
  57. Gurel, O. and O.E. Rössler (1979, Eds), Bifurcation Theory and Applications in scientific disciplines, Annals of the New York Academy of Sciences vol. 316, New York Academy of Sciences, New YorkGoogle Scholar
  58. Hale, J. and H. Koçak (1991), Dynamics and Bifurcations, Texts in Applied Mathematics 3, Springer-Verlag, New York, Inc.CrossRefGoogle Scholar
  59. Hao, B.-L. (1990), Chaos II, World Scientific, SingaporeMATHGoogle Scholar
  60. Hayashi, C. (1964) Nonlinear Oscillations in Physical Systems, McGraw-Hill Inc., (Princeton University Press, Princeton 1985)Google Scholar
  61. Helleman, R.H.G. (1980, Ed.), Nonlinear Dynamics, Annals of the New York Academy of Sciences vol. 357, New York Academy of Sciences, New YorkGoogle Scholar
  62. Hénon, M. (1976), A two-dimensional mapping with a strange attractor, Commun. Math. Phys. 50, 69–77MATHCrossRefGoogle Scholar
  63. Hirsch, M., C. Pugh, and M. Shub (1977), Invariant Manifolds, Lecture Notes in Mathematics 583, Springer-Verlag, Berlin, New York, etc.Google Scholar
  64. Hitzl, D.L. and F. Zele (1985), An exploration of the Henon quadratic map, Physica D 14, 305–326MathSciNetMATHCrossRefGoogle Scholar
  65. Holmes, PJ. (1980), New Approaches to Nonlinear Problems in Dynamics, SIAM, PhiladelphiaMATHGoogle Scholar
  66. Hubbard, J. and B. West (1990), MacMath, Springer-Verlag, Berlin, New York, etc. (A program for the Macintosh computer)Google Scholar
  67. Ikegami, G. (1987, Ed.), Dynamical Systems and Singular Phenomena, World Scientific, SingaporeMATHGoogle Scholar
  68. Iooss, G. (1979), Bifurcations of maps and applications, North-Holland Math. Studies 36, AmsterdamGoogle Scholar
  69. Iooss, G., R.H.G. Helleman and R. Stora (1983, Eds), Chaotic Behavior of Deterministic Systems, North Holland 1983Google Scholar
  70. Jackson, E.A. (1989), Perspectives of Nonlinear Dynamics, Volume 1, Cambridge Univ. Press, Cambridge etc.MATHCrossRefGoogle Scholar
  71. Jackson, E.A. (1991), Perspectives of Nonlinear Dynamics, Volume 2, Cambridge Univ. Press, Cambridge etc.Google Scholar
  72. Jakobson, M.V. (1981), Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun. Math. Phys. 81, 39–88MathSciNetMATHCrossRefGoogle Scholar
  73. Julia, G. (1918), Mémoire sur l’itération des fonctions rationelles, J. Mathématiques Pures et Appliquées 4, 47–245Google Scholar
  74. Kifer, Y. (1988), Random Perturbations of Dynamical Systems, Progress in Probability and Statistics 16, Birkhäuser, BostonGoogle Scholar
  75. Kloeden, P.E. and A.I. Mees (1985), Chaotic phenomena, Bull. Mathematical Biology 47, 697–738MathSciNetMATHGoogle Scholar
  76. Knuth D.E. (1981), The Art of Computer Programming, Volume 2: Semi-numerical Algorithms, Addison-Wesley Publishing CompanyGoogle Scholar
  77. Koçak, H. (1989), Differential and Difference Equations through Computer Experiments, With diskettes containing PHASER: An Animator/Simulator for Dynamical Systems for IBM Personal Computers, Second edition, Springer-Verlag, Berlin, New York, etc.MATHGoogle Scholar
  78. Lanford, O.E. (1982), A computer assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. 6, 427–434MathSciNetMATHCrossRefGoogle Scholar
  79. Lasota, A. and M.C. Mackey (1985), Probabilistic properties of Deterministic Systems, Cambridge University Press, CambridgeMATHGoogle Scholar
  80. Ledrappier, F. and L.-S. Young (1988), Dimension formula for random transformations, Commun. Math. Phys. 117, 529–548MathSciNetMATHCrossRefGoogle Scholar
  81. Lichtenberg, A.J. and M.A. Lieberman (1983), Regular and Stochastic Motion, Applied Mathematical Sciences 38, Springer-Verlag, Berlin, New York etc.Google Scholar
  82. Lorenz, E.N. (1963), Deterministic nonperiodic flow, J. Atm. Sc. 20, 130–141CrossRefGoogle Scholar
  83. Lorenz, H.-W. (1989), Nonlinear Dynamical Economics and Chaotic Motion, Lecture Notes in Economics and Mathematical Systems 334, Springer-Verlag, Berlin, New York, etc.Google Scholar
  84. Lundqvist, S., N.H. March and M. Tosi (1988, Ed.), Order and Chaos in Physical ystems, Plenum press, New York and LondonGoogle Scholar
  85. MacKay, R.S. and C. Tresser (1987), Some flesh on the skeleton: the bifurcation structure of bimodal maps, Physica D 27, 412–422MathSciNetMATHCrossRefGoogle Scholar
  86. Mandelbrot, B.B. (1983), The Fractal Geometry of Nature, W.H. Freeman and Company, New YorkGoogle Scholar
  87. Mané, R. (1987), Ergodic Theory and Dynamical Systems, (Translated from the Portuguese by S. Levy.) Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 8. Springer-Verlag, Berlin, New York, etc.Google Scholar
  88. Marek, M. and I. Schreiber (1991), Chaotic Behaviour of Deterministic Dissipative Systems, Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  89. Markley, N.G., J.C. Martin and W. Perrizo (1978, Eds.), The Structure of Attractors in Dynamical Systems, Proceedings North Dakota State University 1977, Lecture Notes in Mathematics 668. Springer-Verlag, Berlin, New York, etc.Google Scholar
  90. May, R.M. (1975), Biological populations obeying difference equations: stable points, stable cycles and chaos. J. Theor. Biol. 51, 511–524CrossRefGoogle Scholar
  91. May, R.M. (1976), Simple mathematical models with very complicated dynamics, Nature 261, 459–467CrossRefGoogle Scholar
  92. Milnor, J. (1985), On the concept of attractor, Commun. Math. Phys. 99 177–195; Comments On the concept of attractor: correction and remarks, Commun. Math. Phys. 102, 517–519MathSciNetMATHCrossRefGoogle Scholar
  93. Mira, C. (1976), Structures de bifurcations “boîtes emboitées” dans les récurrences ou transformations ponctuelles du premier ordre, dont la fonction présente un seul extremum, Application d’ un probleme de chaos en biologie, Comp. Rend. Acad. Sc. Paris Ser. A t282, 221–224Google Scholar
  94. Moon, F.C. (1987), Chaotic vibrations, An introduction for applied scientists and engineers, John Wiley & Sons, Inc. New York, Chichester, Brisbane, Toronto and SingaporeMATHGoogle Scholar
  95. Moser, J. (1973), Stable and Random Motions in Dynamical Systems, Annals Math. Studies 77, Princeton University Press, Princeton, NJGoogle Scholar
  96. Moss, F., L.A. Lugiato, and W. Schleich (1990, Eds.), Noise and Chaos in Nonlinear Dynamical Systems, Proceedings of the NATO Advanced Research Workshop on Noise and Chaos in Nonlinear Dynamical Systems, Cambridge University Press, CambridgeMATHGoogle Scholar
  97. Myrberg, P.J. (1958, 1959, 1963), Iteration der reellen Polynome zweiten Grades. I. Ann. Acad. Sci. Fennicae 256, 1–10; II. 268, 1–13; III. 336, 1–18Google Scholar
  98. Nitecki, Z. and C. Robinson. (1980, Eds.), Global theory of dynamical systems, Proceedings Northwestern University 1979, Lecture Notes in Mathematics 819, Springer-Verlag, Berlin, New York, etc.Google Scholar
  99. Nusse, H.E. and J.A. Yorke (1989), A procedure for finding numerical trajectories on chaotic saddles, Physica D 36, 137–156MathSciNetMATHCrossRefGoogle Scholar
  100. Oseledec, V.I. (1968), A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19, 197–231MathSciNetGoogle Scholar
  101. Ott, E. (1981), Strange attractors and chaotic motions of dynamical systems, Rev. Modern Phys. 53, 655–671MathSciNetMATHCrossRefGoogle Scholar
  102. Ott, E. (1993), Chaos in Dynamical Systems, Cambridge University Press, CambridgeMATHGoogle Scholar
  103. Palis, J. and W. de Melo (1982), Geometric Theory of Dynamical Systems. An introduction. Springer-Verlag, Berlin, New York, etc.MATHGoogle Scholar
  104. Palis, J. (1983, Ed.), Geometric Dynamics, Proceedings Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 1981, Lecture Notes in Mathematics 1007, Springer-Verlag, Berlin, New York, etc.Google Scholar
  105. Palis, J. and F. Takens (1987), Homoclinic Bifurcations and Hyperbolic Dynamics, 16e Coloquio Brasileiro Matematica, IMPAGoogle Scholar
  106. Parker, T.S. and L.O. Chua (1989), Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, Berlin, New York, etc.MATHCrossRefGoogle Scholar
  107. Peitgen, H.-O. and P. Richter (1986), The Beauty of Fractals, Springer-Verlag, Berlin, New York, etc.MATHCrossRefGoogle Scholar
  108. Peitgen, H.-O. and D. Saupe (Eds.) (1988), The Science of Fractal Images, Springer-Verlag, Berlin, New York, etc.MATHGoogle Scholar
  109. Poincaré, H. (1897), Les méthodes nouvelles de la méchanique céleste, Vols. I and II, Gauthier-Villars, ParisGoogle Scholar
  110. Poincaré, H. (1899), Les méthodes nouvelles de la méchanique céleste, Vol. III, Gauthier-Villars, ParisGoogle Scholar
  111. Pol, B. van der (1926), On relaxation oscillations, Phil. Mag. 2, 978–992Google Scholar
  112. Rand, D. and L.-S. Young (1981, Eds.), Dynamical Systems and Turbulence, Proceedings Warwick 1979, Lect. Not. Math. 898, Springer-Verlag, Berlin, New York, etc.Google Scholar
  113. Ruelle, D. and F. Takens (1971), On the nature of turbulence, Commun. Math. Phys. 20, 167–192MathSciNetMATHCrossRefGoogle Scholar
  114. Ruelle, D. (1980), Strange attractors, Math. Intelligencer 2, 126–137MathSciNetCrossRefGoogle Scholar
  115. Ruelle, D. (1981), Small random perturbations of dynamical systems and the definition of attractors, Commun. Math. Phys. 82, 137–151MathSciNetMATHCrossRefGoogle Scholar
  116. Ruelle, D. (1989), Chaotic Evolution and Strange Attractors, Cambridge University Press, Cambridge, New York, etc.MATHCrossRefGoogle Scholar
  117. Ruelle, D. (1989), Elements of Differentiable Dynamics and Bifurcation Theory, Academic Press, Inc.Google Scholar
  118. Ruelle, D. (1991), Chance and Chaos, Princeton University Press, PrincetonGoogle Scholar
  119. Saari, D. and J. Urenko (1984), Newton’s method, circle maps and chaotic motion. Amer. Math. Monthly 91, 3–18MathSciNetMATHCrossRefGoogle Scholar
  120. Shaw, R. (1981), Strange attractors, chaotic behaviour and information flow, Z. Naturforschung 36A, 80–112Google Scholar
  121. Schuster, H.G. (1984), Deterministic Chaos, Physik-Verlag, WeinheimMATHGoogle Scholar
  122. Schroeder, M. (1991), Fractals, Chaos, Power laws, Minutes from an infinite Paradise, W.H. Freeman and Company, New YorkMATHGoogle Scholar
  123. Shiraiwa, K. (1985), Bibliography for Dynamical Systems, Department of Mathematics Preprint series No. 1, Nagoya UniversityGoogle Scholar
  124. Simó, C. (1979), On the Henon-Pomeau attractor,J. Stat. Phys. 21, 465–494CrossRefGoogle Scholar
  125. Sinai, Ya.G. (1989, Ed.) Dynamical Systems II, Encyclopaedia of Mathematical Sciences. Volume 2. Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics. Springer-Verlag, Berlin, New York, etc.Google Scholar
  126. Sinai, Ya.G. (1991), Dynamical Systems collection of papers, Advanced Series in Nonlinear Dynamics, Vol. 1, World ScientificGoogle Scholar
  127. Smale, S. (1980), The Mathematics of Time. Essays on Dynamical Systems Economic processes and related topics, Springer-Verlag, Berlin, New York, etc.MATHGoogle Scholar
  128. Sparrow, C. (1982), The Lorenz equations: bifurcations, chaos, and strange attractors, Applied Mathematical Sciences 41, Springer-Verlag, Berlin, New York, etc.CrossRefGoogle Scholar
  129. Stein, P.R. and S. Ulam (1964), Nonlinear transformation studies on electronic computers, Rozprawy Matematyczne 39, 1–66MathSciNetGoogle Scholar
  130. Thompson, J.M.T. and H.B. Stewart (1986), Nonlinear Dynamics and Chaos. Geometric methods for engineers and scientists. John Wiley & Sons, Ltd.Google Scholar
  131. Tufillaro, N.B., T. Abbott, and J. Reilly (1992), An experimental approach to Nonlinear Dynamics and Chaos, Addison-Wesley Publishing Company, Redwood CityMATHGoogle Scholar
  132. Verner, J.H. (1978), Explicit Runge-Kutta methods with estimates of the local truncation error, SIAM J. Num. Anal. 15, 772–790MathSciNetMATHCrossRefGoogle Scholar
  133. Vincent, T.L., A.I. Mees, and L.S. Jennings (1990, Eds.), Dynamics of Complex Interconnected Biological Systems, Birkhauser, BostonMATHGoogle Scholar
  134. West, B.J. (1985), An Essay on the Importancy of being Nonlinear, Lecture Notes in Biomathematics 62, Springer-Verlag, Berlin, New York, etc.CrossRefGoogle Scholar
  135. Wiggins, S. (1988), Global Bifurcations and Chaos, Applied Mathematical Sciences 73. Springer-Verlag, Berlin, New York, etc.CrossRefGoogle Scholar
  136. Wiggins, S. (1990), Introduction to Applied Nonlinear Dynamical Systems and Chaos. Text in Applied Math. 2, Springer-Verlag, Berlin, New York, etc.Google Scholar
  137. Wolf, A. (1986), Quantifying chaos with Lyapunov exponents, In “Chaos” (Ed. A.V. Holden), 273–290, Manchester University PressGoogle Scholar
  138. Young, L.-S. (1982), Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys. 2, 109–124MATHCrossRefGoogle Scholar
  139. Zaslavsky, G.M. (1985), Chaos in Dynamic Systems, (Translated from the Russian by V.I. Kisin.) Harwood Academic Publ. Chur, etc.Google Scholar
  140. Zhang, S.-y. (1991), Bibliography on Chaos, Directions in Chaos — Vol. 5, World Scientific Publishing Co. Pte. Ltd., SingaporeGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1994

Authors and Affiliations

  • Helena E. Nusse
    • 1
    • 2
  • James A. Yorke
    • 2
  • Eric J. Kostelich
    • 3
  1. 1.Vakgroep EconometrieRijksuniversiteit GroningenGroningenThe Netherlands
  2. 2.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  3. 3.Department of MathematicsArizona State UniversityTempeUSA

Personalised recommendations