Skip to main content

The Major Histocompatibility Complex

  • Chapter
Fundamentals of Immunology
  • 146 Accesses

Abstract

At the beginning of this century, Tyzzer and Loeb showed that tumors of a strain of mice (A/A) grow normally if they are transplanted into mice of the same inbred strain (syngeneic, see Table 6.1); however, they are rejected by mice of another inbred strain (allogeneic, e.g., B/B). Mating experiments showed that susceptibility for tumor growth is genetically controlled: all F1 animals of the cross A/A × B/B accepted tumors from both parental lines. Based on the percentage of accepted parental tumors in the F2 generation, Little and Tyzzer calculated that in the mouse at least fifteen genes were responsible for the resistance to the parental tumor, because tumors grew in only 1.6% of the F2 animals. According to the preceding example, if susceptibility were controlled by one gene, 75% of the F2 animals would have been susceptible to the parental tumor tissue (50% A/B, 25% A/A, 25% B/B); if susceptibility were controlled by two genes, the number of susceptible animals would be reduced to 56% (9/16). In general, the percentage of F2 animals in which a parental tumor grows is (3/4)n, where n represents the number of different genes of both parental strains that control susceptibility. From these findings it was determined that susceptibility was controlled by several dominant genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert E, Götze D (1977) The major histocompatibility system in man. In: Götze D (ed) The organisation of the major histocompatibility system in man and animals. Springer, Berlin Heideiber New York, p 7

    Chapter  Google Scholar 

  • Binz H, Wigzell W (1975) Shared idiotypic determinants on B and T lymphocytes reactive against the same antigenic determinants. I. Demonstration of similar or identical idiotypes on IgG molecules and T cell receptors with specificity for the same alloanti- gens. J Exp Med 142:197

    Article  PubMed  CAS  Google Scholar 

  • Bodmer WF, Batchelor JR, Bodmer JG, Festenstein H, Morris PJ (eds) (1978) Joint Report 1977. In: Histocompatibility testing 1977. Munksgaard, Copenhagen

    Google Scholar 

  • Burnet FM (1970) Immunological surveillance. Pergamon, Sidney

    Google Scholar 

  • Cantor H, Boyse EA (1975) Functional subclasses of T lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T cell subclasses is a differentiative process independent of antigens. J Exp Med 141:1376

    Article  PubMed  CAS  Google Scholar 

  • Cantor H, Boyse EA (1975) Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer cell activity. J Exp Med 141:1390

    Article  PubMed  CAS  Google Scholar 

  • Counce S, Smith P, Barth R, Snell GD (1956) Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin. Ann Surg 144:198

    Article  PubMed  Google Scholar 

  • Debre P, Kapp JA, Dorf ME, Benacerraf B (1975) Genetic control of specific immune suppression. II. H-2 linked dominant genetic control of immune suppression by the random copolymer L-glutamic acid50-L-tyrosine50 (GT). J Exp Med 142:1447

    Article  PubMed  CAS  Google Scholar 

  • Doherty P, Götze D, Trinchieri G, Zinkernagel RM (1976) Models for recognition of virally-modified cells by immune thymus-derived lymphocytes. Immunogenetics 3:517

    Article  Google Scholar 

  • Edidin M (1972) The tissue distribution and cellular lo-calisation of transplantation antigens. In: Kahan BD, Reisfeld RA (eds) Transplantation antigens, markers of biological individuality. Academic, New York, p 125

    Google Scholar 

  • Falconer DS (1960) Introduction to quantitative genetics. Ronald, New York

    Google Scholar 

  • Fu SM, Kunkel HG, Brusman HP, Allen FH Jr., Fotino M (1974) Evidence for linkage between HL-A histocompatibility genes and those involved in the synthesis of the second component of complement. J Exp Med 140:1108

    Article  PubMed  CAS  Google Scholar 

  • Götze D, Reisfeld RA, Klein J (1973) Serologic evi-dence for antigens controlled by the Ir region in mice. J Exp Med 138:1003

    Article  PubMed  Google Scholar 

  • Götze D (1976) Serologic characterization of la antigens and their relation to Ir genes. Immunogenetics 3:139

    Article  Google Scholar 

  • Götze D (ed) (1977) The major histocompatibility system in man and animals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Götze D, Hofmann L, Huang CM, Vollmers HP (1980) Antigenic complexity of H-2 molecules. In: Protides of the biological fluids, Peeters H (ed), Vol. 28, p. 579. Pergamon Press, London

    Google Scholar 

  • Götze D, Nadeau J, Wakeland EK, Berry RJ, Bonhom- me F, Egorov IK, Hjorth JP, Hoogstraal H, Vives J, Winking H, Klein J (1980) Frequencies of H-2 and la antigens in wild mice from Europe and Africa. J Immunol 124:2675

    PubMed  Google Scholar 

  • Hämmerling G, Mauve G, Goldberg E, McDevitt HO (1975) Tissue distribution of la antigens. Ia on spermatozoa, macrophages and epidermal cells. Immunogenetics 1:428

    Article  Google Scholar 

  • Jerne NK (1971) The somatic generation of immune recognition. Eur J Immunol 1:1

    Article  PubMed  CAS  Google Scholar 

  • Jerne NK (1974) Toward a network theroy of the immune system. Ann Immunol (Inst Pasteur) 125 C:373

    Google Scholar 

  • Klein J (1975) The biology of the mouse histocompatibility-2 complex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Klein J, Juretic A, Nagy Z (1980) The I region of the mouse H-2 complex: A reinterpretation. Nature (in press)

    Google Scholar 

  • Krangel MS, Orr HT, Strominger JL (1980) Structure, function and biosynthesis of the major histocompatibility antigens (HLA-A and HLA-B). Scand J Immunol 11:561

    Article  PubMed  CAS  Google Scholar 

  • McDevitt HO, Benacerraf B (1969) Genetic control of the specific immune response. Adv Immunol 11:31

    Article  PubMed  CAS  Google Scholar 

  • McDevitt HO, Bodmer WF (1974) HL-A, immune response genes, and disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  • McDevitt HO, Deak BD, Shreffler DC, Klein J, Stimpfling JH, Snell GD (1972) Genetic control of the immune response. Mapping of the Ir-1 locus. J Exp Med 135:1259

    Article  PubMed  CAS  Google Scholar 

  • McDevitt HO, Tyan ML (1968) Genetic control of the antibody response in inbred mice. Transfer of the response by spleen cells and linkage to the major histocompatibility (H-2) locus. J Exp Med 128:1

    Article  PubMed  CAS  Google Scholar 

  • Medicus RG, Schreiber RD, Götze D, Müller-Eberhard HJ (1976) A molecular concept of the properdin pathway. Proc Natl Acad Sci (Wash.) 73:612

    Article  CAS  Google Scholar 

  • Meo T, Krasteff T, Shreffler DC (1975) Immunochemical characterization of murine H-2 controlled Ss (serum substance) protein through identification of its human homologue as the fourth component of complement. Proc Natl Acad Sci (Wash.) 72:4536

    Article  CAS  Google Scholar 

  • Möller G (ed) (1980) T cell stimulating growth factors. Immunol Rev 51 Revised nomenclature for antigen-nonspecific T cell proliferation and helper factors. J Immunol 128:2928 (1979)

    Google Scholar 

  • Rood J van, Leeuwen A van, Termijtelen A, Keuning J J (1976) B cell antibodies, la-like determinants, and their relation to MLC determinants in man. Transplant Rev 30:122

    PubMed  Google Scholar 

  • Seiwood N, Hedges A (1978) Transplantation antigens: A study in serological data analysis. Wiley, Chichester

    Google Scholar 

  • Shreffler DC, David CS (1975) The H-2 major histocompatibility complex and the I immune response region: Genetic variation, function, and organization. Adv Immunol 20:125

    Article  PubMed  CAS  Google Scholar 

  • Snell GD, Dausset J, Nathenson S (1976) Histocompatibility. Academic, New York

    Google Scholar 

  • Someren H van, Westerveld A, Hagemeijer A, Mees JR, Meera Khan P, Zaalberg OB (1974) Human antigen and enzyme markers in man/Chinese hamster somatic cell hybrids. Evidence for synteny between the HLA, PGM-3, MEl5 and IPO-B loci. Proc Natl Acad Sci (Wash.) 71:962

    Article  Google Scholar 

  • Svejgaard A, Platz P, Ryder LP, Staub-Nielsen L, Thomsen M (1975) HL-A and disease association — A survey. Transplant Rev 22:3

    PubMed  CAS  Google Scholar 

  • Terasaki PI, Mickey MR (1975) HL-A haplotypes of 32 diseases. Transplant Rev 22:105

    PubMed  CAS  Google Scholar 

  • Thorsby E, Piazza A (1975) Joint report from the VI International Histocompatibility Workshop. II. Typing for HLA-D (LD-1 or MLC) determinants. In: Kissmeyer-Nielsen F (ed) Histocompatibility testing 1975. Munksgaard, Copenhagen, p 414

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Götze, D. (1981). The Major Histocompatibility Complex. In: Fundamentals of Immunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0116-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0116-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90529-7

  • Online ISBN: 978-1-4684-0116-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics