Advertisement

Forest Nutrient Cycling: Influence of Trace Metal Pollutants

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Nutrients must move into, within, and out of forest ecosystems in appropriate amounts, at appropriate rates and along established pathways for normal forest growth to occur. The two major sources of nutrients for temperate forest ecosystems are (1) meteorologic input of dissolved, particulate, and gaseous chemicals from outside the ecosystem ; and (2) release by weathering of nutrients from primary and secondary minerals stored within the ecosystem (Bormann and Likens, 1979). Healthy forest ecosystems conserve these nutrients and continually recycle them through the system via an elaborate litterfall-decomposition-uptake intrasystem cycle.

Keywords

Nickel Urea Cobalt Boron Tungsten 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Khafaji, A. A., and M. A. Tabatabai. 1979. Effects of trace elements on arylsulfatase activity in soils. Soil Sci. 127:129–133.CrossRefGoogle Scholar
  2. Atlas, R. M., D. Pramer, and R. Bartha. 1978. Assessment of pesticide effects on non-target soil microorganisms. Soil Biol. Biochem. 10:231–239.CrossRefGoogle Scholar
  3. Ausmus, B. S. 1973. The use of ATP assay in terrestrial decomposition studies. Bull. Ecol. Res. Commun. (Stockholm) 17:223–234.Google Scholar
  4. Ausmus, B. S. 1977. Regulation of wood decomposition rates by arthropod and annelid populations. In: U. Lohm and T. Persson (Eds.), Soil Organisms as Components of Ecosystems. Ecolog. Bull. (Stockholm) 25:180–192.Google Scholar
  5. Babich, H., and G. Stotzky. 1978. Effects of cadmium on the biota: Influence of environmental factors. Adv. Appl. Microbiol. 23:55–117.PubMedCrossRefGoogle Scholar
  6. Belser, L. W. 1979. Population ecology of nitrifying bacteria. Annu. Rev. Microbiol. 33:309–333.PubMedCrossRefGoogle Scholar
  7. Bhuiya, M. R. H., and A. H. Cornfield. 1972. Effects of addition of 1000 ppm Cu, Ni, Pb and Zn on carbon dioxide release during incubation of soil alone and after treatment with straw. Environ. Pollut. 3:173–177.CrossRefGoogle Scholar
  8. Bond, H., B. Lighthart, R. Shimabuku, and L. Russell. 1976. Some effects of cadmium on coniferous forest soil and litter microcosms. Soil Sci. 121:278–287.CrossRefGoogle Scholar
  9. Bondietti, E. A. 1976. Percent amino sugars and urease enzyme activity in litter as a function of distance from the smelter stack on Crooked Creek Watershed. In: R. I. Van Hook and W. D. Shults (Eds.), Ecology and Analysis of Trace Contaminants. Progress Report. Oct. 1974–Dec. 1975. ORNL/NSF/EATC-22 Oak Ridge Nat. Lab., Oak Ridge, Tennessee, p. 102.Google Scholar
  10. Bormann, F. H., and G. E. Likens. 1979. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York, 253 pp.CrossRefGoogle Scholar
  11. Bremner, J. M., and R. L. Mulvaney. 1978. Urease activity in soils. In: R. G. Burns (Ed.), Soil Enzymes. Academic Press, New York, pp. 149–196.Google Scholar
  12. Bums, R. G. 1978. Soil Enzymes. Academic Press, New York, 380 pp.Google Scholar
  13. Cromack, K., Jr., and C. D. Monk. 1975. Litter production, decomposition, and nutrient cycling in a mixed hardwood watershed and a white pine watershed. In: F. G. Howell, J. B. Gentry, and M. H. Smith (Eds.), Mineral Cycling in Southeastern Ecosystems. ERDA Symposium Series No. CONF-740513, pp. 609–624.Google Scholar
  14. Devi, L. S. 1962. Nutritional Requirements of Fungi. University of Madras, Madras, India, 29 pp.Google Scholar
  15. Doelman, P. 1978. Lead and terrestrial microbiota. In: J. O. Nriagu (Ed.), The Biogeochemistry of Lead in the Environment. Part B. Biological Effects. Elsevier-North-Holland Biomedical Press, New York, pp. 343–353.Google Scholar
  16. Ebregt, A., and J. M. A. M. Boldewijm. 1977. Influence of heavy metals in spruce forest soil on amylase activity, CO2 evolution from starch and soil respiration. Plant Soil 47:137–148.CrossRefGoogle Scholar
  17. Etherington, J. R. 1975. Environment and Plant Ecology. Wiley, New York, 347 pp.Google Scholar
  18. Flanagan, P. W., and K. Van Cleve. 1977. Microbial biomass, respiration and nutrient cycling in a black spruce taiga ecosystem. In: V. Lohnn and T. Persson (Eds.), Soil Organisms as Components of Ecosystems. Ecolog. Bull. (Stockholm) 25:261–273.Google Scholar
  19. Frankland, J. C., and D. K Lindley. 1978. A comparison of two methods for the estimation of mycelial biomass in leaf litter. Soil Biol. Biochem. 10: 323–333.CrossRefGoogle Scholar
  20. Fujihara, M. P., T. R. Gorland, R. E. Wildung, and H. Drucker. 1973. Response of microbiota to the presence of heavy metals in soils. Proc. 1973 Annu. Meet. Amer. Soc. Microbiol.Google Scholar
  21. Garrett, S. D. 1963. Soil Fungi and Soil Fertility. Pergamon Press, New York, 165 pp.Google Scholar
  22. Goodfellow, M., and D. Dawson. 1978. Qualitative and quantitative studies of bacteria colonizing Picea sitchensis litter. Soil Biol. Biochem. 10:303–307.CrossRefGoogle Scholar
  23. Grant, I. F., K. Bancroft, and M. Alexander. 1979. SO2 and NO2 effects on microbial activity in an acid forest soil. Microbiol. Ecol. 5:85–89.CrossRefGoogle Scholar
  24. Griffin, D. M. 1972. Ecology of Soil Fungi. Syracuse Univ. Press, Syracuse, New York, 193 pp.Google Scholar
  25. Horsfall, J. G. 1956. Principles of Fungicidal Action. Chronica Botanica Co., Waltham, Massachusetts, 279 pp.Google Scholar
  26. Inman, J. C., and G. R. Parker. 1978. Decomposition and heavy metal dynamics of forest litter in northwestern Indiana. Environ. Pollut. 17:39–51.CrossRefGoogle Scholar
  27. Jackson, D. R., and A. P. Watson. 1977. Disruption of nutrient pools and transport of heavy metals in a forested watershed near a lead smelter. J. Environ. Qual. 6:331–338.CrossRefGoogle Scholar
  28. Jackson, D. R., C. D. Washbume, and B. S. Ausmus. 1977. Loss of Ca and NO3-N from terrestial microcosms as an indicator of soil pollution. Water, Air, Soil Pollut. 8:279–284.CrossRefGoogle Scholar
  29. Jackson, D. R., W. J. Selvidge, and B. S. Ausmus. 1978a. Behavior of heavy metals in forest microcosms: I. Transport and distribution among components. Water, Air, Soil Pollut. 10:3–11.Google Scholar
  30. Jackson, D. R., W. J. Selvidge, and B. S. Ausmus. 1978b. Behavior of heavy metals in forest microcosms: II. Effects on nutrient cycling processes. Water, Air, Soil Pollut. 10:13–18.Google Scholar
  31. Jensen, V. 1976. Effects of lead on biodegradation of hydrocarbons in soil. Oikos 28:220–224.CrossRefGoogle Scholar
  32. Jernelöv, A., and A. L. Martin. 1975. Ecological implications of metal metabolism by microorganisms. Annu. Rev. Microbiol. 29:61–77.PubMedCrossRefGoogle Scholar
  33. Joosse, E. N. G., and J. B. Buker. 1979. Uptake and excretion of lead by litter- dwelling collembola. Environ. Pollut. 18:235–240.CrossRefGoogle Scholar
  34. Jordan, M. J., and M. P. Lechevalier. 1975. Effects of zinc-smelter emissions on forest soil microflora. Can. J. Microbiol. 21:1855–1865.PubMedCrossRefGoogle Scholar
  35. Juma, N. G., and M. A. Tabatabai. 1977. Effects of trace elements on phosphatase activity in soils. Soil Sci. Soc. Am. J. 41:343–346.CrossRefGoogle Scholar
  36. Kühnelt, W., and N. Walker. 1976. Soil Biology. Michigan State Univ. Press, East Lansing, Michigan, 483 pp.Google Scholar
  37. Labeda, D. P., and M. Alexander. 1978. Effects of SO2 and NO2 on nitrification in soil. J. Environ. Qual. 7:523–526.CrossRefGoogle Scholar
  38. Lang, G. E., and R. T. T. Forman. 1978. Detrital dynamics in a mature oak forest: Hutcheson Memorial Forest, New Jersey. Ecology 59:580–595.CrossRefGoogle Scholar
  39. Lewis, J. A., G. C. Papavizas, and T. S. Hora. 1978. Effect of some herbicides on microbial activity in soil. Soil Biol. Biochem. 10:137–141.CrossRefGoogle Scholar
  40. Liang, C. N., and M. A. Tabatabai. 1977. Effects of trace elements on nitrogen mineralization in soils. Environ. Pollut. 12:141–147.CrossRefGoogle Scholar
  41. Liang, C. N., and M. A. Tabatabai. 1978. Effects of trace elements on nitrification in soils. J. Environ. Qual. 7:291–293.CrossRefGoogle Scholar
  42. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton, and N. M. Johnson. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York, 146 pp.CrossRefGoogle Scholar
  43. Lutz, J. H., and R. F. Chandler, Jr. 1946. Forest Soils. Wiley, New York, 514 pp.Google Scholar
  44. Lynch, J. M. 1979. Micro-organisms in their natural environments. The terrestrial environment. In: J. M. Lynch and N. J. Poole (Eds.), Microbial Ecology: A Conceptual Approach. Wiley, New York, pp. 67–91.Google Scholar
  45. Mader, D. L., H. W. Lull, and E. I. Swenson. 1977. Humus Accumulation in Hardwood Stands in the Northeast. Mass. Exp. Sta. Res. Bull. No. 648, Univ. of Massachusetts, Amherst, Massachusetts, 37 pp.Google Scholar
  46. Mason, C. F. 1977. Decomposition. Institute of Biology’s, Studies in Biology No. 74, Edward Arnold, London, 58 pp.Google Scholar
  47. McLaren, A. D., and G. H. Peterson. 1967. Soil Biochemistry. Dekker, New York, 509 pp.Google Scholar
  48. Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472.CrossRefGoogle Scholar
  49. Mikkelsen, J. P. 1974. Effects of lead on the microbiological activity in soil. Tidster Plant 78:509–516.Google Scholar
  50. Morissey, R. F., E. P. Dugan, and J. S. Koths. 1974. Inhibition of nitrification by incorporation of select heavy metals in soil. Proc. Annu. Meet. Am. Soc. Microbiol. 74:2.Google Scholar
  51. Nannipieri, P., R. L. Johnson, and E. A. Paul. 1978. Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem. 10:223–229.CrossRefGoogle Scholar
  52. Odum, E. P. 1971. Fundamentals of Ecology. Saunders, Philadelphia, 574 pp.Google Scholar
  53. Perlman, D. 1949. Effects of minor elements on the physiology of fungi. Bot. Rev. 15:195–220.CrossRefGoogle Scholar
  54. Riechle, D. E. 1977. The role of soil invertebrates in nutrient cycling. In: U. Lohm and T. Persson (Eds.), Soil Organisms as Components of Ecosystems. Ecolog. Bull. (Stockholm) 25:145–156.Google Scholar
  55. Rühling, Å., and G. Tyler. 1973. Heavy metal pollution and decomposition of spruce needle litter. Oikos 24:402–416.CrossRefGoogle Scholar
  56. Saxena, J., and P. H. Howard. 1977. Environmental transformation of alkylated and inorganic forms of certain metals. Adv. Appl. Microbiol. 21:185–226.PubMedCrossRefGoogle Scholar
  57. Singh, U. R., and B. D. Tripathi. 1978. Effects of industrial effluents on the population density of soil microarthropods. Environ. Conserva. 5:229–231.CrossRefGoogle Scholar
  58. Somers, E. 1961. The fungitoxicity of metal ions. Annu. Appl. Biol. 49:246–253.CrossRefGoogle Scholar
  59. Spalding, B. P. 1977. Enzymatic activities related to the decomposition of coniferous leaf litter. Soil Sci. Soc. Am. J. 41:622–627.CrossRefGoogle Scholar
  60. Spalding, B. P. 1979. Effects of divalent metal chlorides on respiration and extractable enzymatic activities of Douglas-fir needle litter. J. Environ. Qual. 8:105–109.CrossRefGoogle Scholar
  61. Summers, A. O. 1978. Microbial transformations of metals. Annu. Rev. Microbiol. 32:637–672.PubMedCrossRefGoogle Scholar
  62. Todd, R. L., K. Cromack, and J. C. Stormer. 1973. Chemical exploration of the microhabitat by electron probe microanalysis of decomposer organisms. Nature 243:544–546.CrossRefGoogle Scholar
  63. Tyler, G. 1972. Heavy metals pollute nature, may reduce productivity. Ambio 1:52–59.Google Scholar
  64. Tyler, G. 1974. Heavy metal pollution and soil enzymatic activity. Plant Soil 41:303–311.CrossRefGoogle Scholar
  65. Tyler, G. 1976. Heavy metal pollution, phosphatase activity, and mineralization or organic phosphorus in forest soils. Soil Biol. Biochem. 8:327–332.CrossRefGoogle Scholar
  66. Tyler, G., B. Mörnsjö, and B. Nilsson. 1974. Effects of cadmium, lead, and sodium salts on nitrification in a mull soil. Plant Soil 40:237–242.CrossRefGoogle Scholar
  67. Watson, A. P., R. I. Van Hook, and D. E. Reichle. 1976. Impact of lead mining smelting complex on the forest-floor litter arthropod fauna in the new lead belt region of southeast, Missouri. Environ. Sci. Div. Publica. No. 881, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 163 pp.Google Scholar
  68. Weinberg, E. D. 1970. Biosynthesis of secondary metabolites: Roles of trace metals. Adv. Microbiol. Physiol. 4:1–44.CrossRefGoogle Scholar
  69. Whittaker, R. H. 1975. Communities and Ecosystems. Macmillan, London, 385 pp.Google Scholar
  70. Wilde, S. A. 1958. Forest Soils. Ronald Press, New York, 537 pp.Google Scholar
  71. Williams, S. T., T. McNeilly, and E. M. H. Wellington. 1977. The decomposition of vegetation growing on metal mine waste. Soil Biol. Biochem. 9:271–275.CrossRefGoogle Scholar
  72. Wilson, D. O. 1977. Nitrification in soil treated with domestic and industrial sewage sludge. Environ. Pollut. 12:73–82.CrossRefGoogle Scholar
  73. Witkamp, M. 1971. Soils as components of ecosystems. Annu. Rev. Ecol. Syst. 2:85–110.CrossRefGoogle Scholar
  74. Witkamp, M., and B. S. Ausmus. 1976. Processes in decomposition and nutrient transfer in forest systems. In: J. M. Anderson and A. Macfadyen (Eds.), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. 17th Symp. Brit. Ecol. Soc. Blackwell, London, pp. 375–376.Google Scholar
  75. Zajic, J. E. 1969. Microbial Biogeochemistry. Academic Press, New York, 345 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations