Class I Summary: Relative Importance of Forest Source and Sink Strength and Some Potential Consequences of These Functions

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)


The Class I relationship between forest ecosystems and air pollution is of primary importance when the atmospheric load of air contaminants from anthropogenic sources is relatively low. This situation exists locally and regionally when the sources of air pollutants produced by the activities of human beings are not operating or operating at low level or when meteorological conditions are not conducive to atmospheric accumulation. On a global scale, the Class I relationship may be extensive throughout those regions relatively remote from the activities of people. The specific concentration of air contaminants under “low” conditions is variable depending on the pollutant, but in general is meant to approximate “background,” clean-air concentrations as, for example, presented by Rasmussen et al. (1975) for the major trace gases in μg m-3 : sulfur dioxide (1–4), hydrogen sulfide (0.3), dinitrogen oxide (460–490), nitric oxide (0.3–2.5), nitrogen dioxide (2–2.5), ammonia (4), carbon monoxide (100), ozone (20–60), and reactive hydrocarbons (<1). Since the majority of air contaminants of greatest significance to vegetative and human health (Table 1-1) originate from, and are removed by, both anthropogenic and natural agents it is essential to evaluate the importance of forest ecosystems within the latter group.


Nitric Oxide Environmental Protection Agency Forest Ecosystem Sulfur Dioxide Ozone Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., L. E. Craker, L. E. Forrence, and G. R. Leather. 1971. Fate of air pollutants: Removal of ethylene, sulfur dioxide, and nitrogen dioxide by soil. Science 175:914–916.CrossRefGoogle Scholar
  2. Adams, D. F., S. O. Farwell, M. R. Pack, and W. L. Banesberger. 1979. Preliminary measurements of biogenic sulfur-containing gas emissions from soils. J. Air Pollut. Control Assoc. 29:380–383.Google Scholar
  3. Altshuller, A. P. 1975. Evaluation of oxidant results at CAMP sites in the United States. J. Air Pollut. Control Assoc. 25:19–24.PubMedGoogle Scholar
  4. Baes, C. F., Jr., H. E. Goeller, J. S. Olson, and R. M. Rotty. 1977. Carbon dioxide and climate: The uncontrolled experiment. Am. Scien. 65:310–320.Google Scholar
  5. Bidwell, R. G. S., and D. E. Fraser. 1972. Carbon monoxide uptake and metabolism by leaves. Can. J. Bot. 50:1435–1439.CrossRefGoogle Scholar
  6. Bolin, B. 1977. Changes of land biota and their importance for the carbon cycle. Science 196:613–615.PubMedCrossRefGoogle Scholar
  7. Bormann, F. H., and G. E. Likens. 1979. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York, 253 pp.CrossRefGoogle Scholar
  8. Botkin, D. B. 1977. Forests, lakes, and the anthropogenic production of carbon dioxide. Bio. Sci. 27:325–331.Google Scholar
  9. Bremner, J. M., and C. G. Steele. 1978. Role of microorganisms in the atmospheric sulfur cycle. Adv. Microb. Ecol. 2:155–201.CrossRefGoogle Scholar
  10. Broecker, W. S. 1975. Climatic change: Are we on the brink of a pronounced global warming? Science 189:460–463.PubMedCrossRefGoogle Scholar
  11. Bruntz, S. M., W. S. Cleveland, T. E. Graedel, B. Kleiner, and J. L. Warner. 1974. Ozone concentrations in New Jersey and New York: Statistical association with related variables. Science 186:257–258.PubMedCrossRefGoogle Scholar
  12. Bufalini, J. J., T. A. Walter, and M. M. Bufalini. 1976. Ozone formation potential of organic compounds. Environ. Sci. Technol. 10:908–912.CrossRefGoogle Scholar
  13. Chameides, W. L., and D. H. Stedman. 1976. Ozone formation from NOx in “clean air.” Environ. Sci. Technol. 10:150–153.CrossRefGoogle Scholar
  14. Cleveland, W. S., and T. E. Graedel. 1979. Photochemical air pollution in the northeast United States. Science 204:1273–1278.PubMedCrossRefGoogle Scholar
  15. Cleveland, W. S., and B. Kleiner. 1975. Transport of photochemical air pollution from Camden-Philadelphia urban complex. Environ. Sci. Technol. 9:869–872.CrossRefGoogle Scholar
  16. Cleveland, W. S., and J. E. McRae. 1978. Weekday-weekend ozone concentrations in the northeast United States. Environ. Sci. Technol. 12:558–563.CrossRefGoogle Scholar
  17. Cleveland, W. S., T. E. Graedel, B. Kleiner, and J. L. Warner. 1974. Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science 186:1037–1038.PubMedCrossRefGoogle Scholar
  18. Cleveland, W. S., B. Kleiner, J. E. McRae, and J. L. Warner. 1976. Photochemical air pollution: Transport from the New York City area into Connecticut and Massachusetts. Science 191:179–181.PubMedCrossRefGoogle Scholar
  19. Cochran, P. H. 1978. Response of a pole-size ponderosa pine stand to nitrogen, phosphorus and sulfur. U.S.D.A. Forest Service, Research Note No. PNW-319, Portland, Oregon, 8 pp.Google Scholar
  20. Coffey, P. E., and W. N. Stasiuk. 1975. Evidence of atmospheric transport of ozone into urban areas. Environ. Sci. Technol. 9:59–62.CrossRefGoogle Scholar
  21. Focht, D. D., and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Adv. Microb. Ecol. 1:135–214.Google Scholar
  22. Glasson, W. A., and C. S. Tuesday. 1970. Hydrocarbon reactivities in the atmospheric photooxidation of nitric oxide. Environ. Sci. Technol. 4:916–924.CrossRefGoogle Scholar
  23. Graedel, T. E., L. A. Farrow, and T. A. Weber. 1977. Photochemistry of the “Sunday Effect.” Environ. Sci. Technol. 7:690–694.CrossRefGoogle Scholar
  24. Grimsrud, E. P., H. H. Westberg, and R. A. Rasmussen. 1975. Atmospheric reactivity of monoterpene hydrocarbons. NOx photooxidation and ozonolysis. Int. J. Chem. Kinet. Symp. 1:183–195.Google Scholar
  25. Ingersoll, R. B., R. E. Inman, and W. R. Fisher. 1974. Soils potential as a sink for atmospheric carbon monoxide. Tellus 26:151–158.CrossRefGoogle Scholar
  26. Isaksen, I. S. A., Ø. Hov, and E. Hesstvedt. 1978. Ozone generation over rural areas. Environ. Sci. Technol. 12:1279–1284.CrossRefGoogle Scholar
  27. Japar, S. M., C. H. Wu, and H. Niki. 1974. Rate constants for the gas phase reaction of ozone with a-pinene and terpinolene. Environ. Lett. 7:245–249.CrossRefGoogle Scholar
  28. Jensen, K. F. 1975. Sulfur content of hybrid poplar cuttings fumigated with sulfur dioxide. U.S.D.A. Forest Service Research Note No. NE-209, Broomall, Pennsylvania, 4 pp.Google Scholar
  29. Jensen, K. F., and T. T. Kozlowski. 1975. Absorption and translocation of sulfur dioxide by seedlings of four forest tree species. J. Environ. Qual. 4:379–382.CrossRefGoogle Scholar
  30. Kim, C. M. 1973. Influence of vegetation types on the intensity of ammonia and nitrogen dioxide liberation from soil. Soil Biol. Biochem. 5:163–166.CrossRefGoogle Scholar
  31. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton, and N. M. Johnson. 1977. Biochemistry of a Forested Ecosystem. Springer-Verlag, New York, 146 pp.CrossRefGoogle Scholar
  32. Lonneman, W. A., R. L. Seila, and J. J. Bufalini. 1978. Ambient air hydrocarbon concentrations in Florida. Environ. Sci. Technol. 12:459–463.CrossRefGoogle Scholar
  33. Maugh, T. H. 1975. Air pollution: Where do hydrocarbons come from? Science 189:277–278.PubMedCrossRefGoogle Scholar
  34. Maugh, T. H. 1979. SO2 pollution may be good for plants. Science 205:383.PubMedCrossRefGoogle Scholar
  35. McLean, D. M. 1978. A terminal Mesozoic “greenhouse”: Lessons from the past. Science 201:401–406.PubMedCrossRefGoogle Scholar
  36. Middleton, J. T. 1967. Air—An essential resource for agriculture. In: N. C. Brady (Ed.), Agriculture and the Quality of Our Environment. Amer. Assoc. Advan. Sci., Publica. No. 85, AAAS, Washington, D.C., pp. 3–9.Google Scholar
  37. Miller, P. R., M. H. McCutchan, and H. D. Milligan. 1972. Oxidant air pollution in the Central Valley, Sierra Nevada Foothills and Mineral King Valley of California. Atmos. Environ. 6:623.PubMedCrossRefGoogle Scholar
  38. Murphy, C. E., Jr., T. R. Sinclair, and K. R. Knoerr. 1977. An assessment of the use of forests as sinks for the removal of atmospheric sulfur dioxide. J. Environ. Qual. 6:388–396.CrossRefGoogle Scholar
  39. National Academy of Sciences. 1977. Ozone and Other Photochemical Oxidants. National Academy of Sciences, Washington, D.C., 717 pp.Google Scholar
  40. Noggle, J. C., and H. C. Jones. 1979. Accumulation of Atmospheric Sulfur by Plants and Sulfur-Supplying Capacity of Soils. U.S. Environmental Protection Agency, Publica. No. 600/7-79-109, Washington, D.C., 37 pp.Google Scholar
  41. Noggle, J. C., H. C. Jones, and J. M. Kelly. 1978. Effects of accumulated nitrates on plants. Paper presented at the 71st Annual Meeting, Air Pollution Control Association, June 25–30, 1978. Houston, Texas, 16 pp.Google Scholar
  42. Nozhevnikova, A. N., and L. N. Yurganov. 1978. Microbiological aspects of regulating the carbon monoxide content in the earth’s atmosphere. Adv. Microb. Ecol. 2:203–244.CrossRefGoogle Scholar
  43. Persson, R. 1974. World Forest Resources. Review of the World’s Forest Resources in the Early 1970’s. Research Note No. 17, Royal College of Forestry, Stockholm, Sweden.Google Scholar
  44. Rasmussen, R. A. 1972. What do the hydrocarbons from trees contribute to air pollution? J. Air Pollut. Control Assoc. 22:537–543.PubMedGoogle Scholar
  45. Rasmussen, K. H., M. Taheri, and R. L. Kabel. 1975. Global emissions and natural processes for removal of gaseous pollutants. Water, Air, Soil Pollut. 4:33–64.CrossRefGoogle Scholar
  46. Research Triangle Institute. 1973. Investigation of high ozone concentration in the vicinity of Garrett County, Maryland and Preston County, West Virginia. RTI Publication NTIS No. PB-218540, Research Triangle Park, North Carolina.Google Scholar
  47. Richter, H. G. 1970. Special ozone and oxidant measurements in vicinity of Mount Storm, West Virginia. Research Triangle Institute, Research Triangle Park, North Carolina.Google Scholar
  48. Ripperton, L. A., and D. Lillian. 1971. The effect of water vapor on ozone synthesis in the photo-oxidation of alpha-pinene. J. Air Pollut. Control Assoc. 21:629–635.PubMedGoogle Scholar
  49. Robinson, E., and R. C. Robbins. 1971. Emission Concentration and Fate of Particulate Atmospheric Pollutants. Final Report, SRI Project SCC-8507. Stanford Research Institute, Menlo Park, California.Google Scholar
  50. Rogers, H. H., J. C. Campbell, and R. J. Volk. 1979. Nitrogen-15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206:333–335.PubMedCrossRefGoogle Scholar
  51. Sandberg, J. S., M. J. Basso, and B. A. Okin. 1978. Winter rain and summer ozone: A predictive relationship. Science 200:1051–1054.PubMedCrossRefGoogle Scholar
  52. Schneider, S. H. 1975. On the carbon dioxide-climate confusion. J. Atmos. Sci. 32:2060–2066.CrossRefGoogle Scholar
  53. Seiler, W. 1974. The cycle of atmospheric CO. Tellus 26:116–135.CrossRefGoogle Scholar
  54. Spedding, D. J. 1974. Air Pollution. Oxford Chemistry Series. Clarendon Press, Oxford, 76 pp.Google Scholar
  55. Stasiuk, W. N., Jr., and P. E. Coffey. 1974. Rural and urban ozone relationships in New York State. J. Air Pollut. Control Assoc. 24:564–568.PubMedGoogle Scholar
  56. Stephens, E. R., and W. E. Scott. 1962. Relative reactivity of various hydrocarbons in polluted atmospheres. Am. Petroleum Institute Proc. 42:665–670.Google Scholar
  57. Thompson, L. M., and F. R. Troeh. 1978. Soils and Soil Fertility. McGraw-Hill, New York, 516 pp.Google Scholar
  58. Troiano, J. J., and I. A. Leone. 1977. Changes in growth rate and nitrogen content of tomato plants after exposure to NO2 . Phytopathology 67:1130–1133.CrossRefGoogle Scholar
  59. U.S. Department of Agriculture. 1964. Sulfur as a Plant Nutrient in the Southern United States. Tech. Bull. No. 1297, Washington, D.C., 45 pp.Google Scholar
  60. U.S. Department of Agriculture, Forest Service. 1978. Forest Statistics of the U.S. 1977. U.S.D.A., Washington, D.C., 133 pp.Google Scholar
  61. U.S. Department of Agriculture, Forest Service. 1979. A Report to Congress on the Nation’s Renewable Resources. RPA Assessment and Alternative Program Directions. U.S.D.A., Washington, D.C., 209 pp.Google Scholar
  62. U.S. Environmental Protection Agency. 1976. Open Space as an Air Resource Management Measure. Vol. II. Design Criteria. Publica. No. EPA-450/3-76-028b. U.S.E.P.A., Research Triangle Park, North Carolina.Google Scholar
  63. U.S. Environmental Protection Agency. 1977. National Air Quality and Emissions Trends Report, 1976. U.S.E.P.A. Publica. No. EPA-450/1-77-002, Research Triangle Park, North Carolina.Google Scholar
  64. Wainwright, M. 1978. Distribution of sulphur oxidation products in soils and on Acer pseudoplatanus L. growing close to sources of atmospheric pollution. Environ. Pollut. 17:153–160.CrossRefGoogle Scholar
  65. Westberg, H. H., and R. A. Rasmussen. 1972. Atmospheric photochemical reactivity of monoterpene hydrocarbons. Chemosphere 4:163–168.CrossRefGoogle Scholar
  66. White, W. H., J. A. Anderson, D. L. Blumenthal, R. B. Husar, N. V. Gillani, J. D. Huser, and W. E. Wilson, Jr. 1976. Formation and transport of secondary air pollutants: Ozone and aerosols in the St. Louis urban plume. Science 194: 187–189.Google Scholar
  67. Will, G. M., and C. T. Youngberg. 1978. Sulfur status of some central Oregon pumice soils. Soil Sci. Soc. Am. 42:132–134.CrossRefGoogle Scholar
  68. Wolff, G. T., P. J. Lioy, R. E. Meyers, R. T. Cederwall, G. D. Wight, R. E. Pasceri, and R. S. Taylor. 1977. Anatomy of two ozone transport episodes in the Washington, D.C. to Boston, Mass. corridor. Environ. Sci. Technol. 11:506–510.CrossRefGoogle Scholar
  69. Wong, C. S. 1978. Atmospheric input of carbon dioxide from burning wood. Science 200:197–200.PubMedCrossRefGoogle Scholar
  70. Woodwell, G. M. 1978. The carbon dioxide question. Sci. Am. 238:34–43.CrossRefGoogle Scholar
  71. Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwiche, and D. B. Botkin. 1978. The biota and the world carbon budget. Science 199: 141–146.PubMedCrossRefGoogle Scholar
  72. Wright, R. D. 1974. Rising atmospheric CO2 and photosynthesis of San Bernardino Mountain plants. Am. Mid. Natural 91:360–370.CrossRefGoogle Scholar
  73. Wright, R. D., and G. M. Woodwell. 1970. Effect of increased CO2 on carbon fixation by a forest. Brookhaven National Laboratory, Publica. No. 1444, Upton, New York, 7 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations