Forests as Sinks for Air Contaminants: Soil Compartment

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)


Air contaminants may be removed from the atmosphere by a variety of mechanisms. The primary processes are precipitation scavenging, chemical reaction, dry deposition (sedimentation), and absorption (impaction) (Rasmussen et al., 1974). Loss via precipitation may occur in two ways: “rainout” which involves both absorption and particle capture by falling raindrops. Primary and secondary contaminants are subject to a large number of chemical reactions in the atmosphere that may ultimately transform them into an aerosol or oxidized or reduced product. Attachment by aerosols and subsequent deposition on the surface of the earth is termed dry deposition. Absorption by water bodies, soils, or vegetation at the surface of the earth is an additional extremely important removal process.


Combustion Dioxide Chromium Sludge Cobalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B., L. E. Craker, L. E. Forrence, and G. R. Leather. 1971. Fate of air pollutants: Removal of ethylene, sulfur dioxide and nitrogen dioxide by soil. Science 173:914–916.PubMedCrossRefGoogle Scholar
  2. Aldaz, L. 1969. Flux measurements of atmospheric ozone over land and water. J. Geophys. Res. 74:6943–6946.CrossRefGoogle Scholar
  3. Alway, F. J., A. W. Marsh, and W. J. Methley. 1973. Sufficiency of atmospheric sulfur for maximum crop yields. Soil Sci. Soc. Am. Proc. 2:229–238.CrossRefGoogle Scholar
  4. Benninger, L. K., D. M. Lewis, and K. K. Turekian. 1975. The use of natural Pb- 210 as a heavy metal tracer in the river-estuarine system. In: T. M. Church (ed.), Marine Chemistry and Coastal Environment, American Chemical Society Symposium Series No. 18, pp. 201–210, American Chemical Society, Washington, D.C.Google Scholar
  5. Bidwell, R. G. S., and D. E. Fraser. 1972. Carbon monoxide uptake and metabolism by leaves. Can. J. Bot. 50:1435–1439.CrossRefGoogle Scholar
  6. Bohn, H. L. 1972. Soil absorption of air pollutants. J. Environ. Qual. 1:372–377.CrossRefGoogle Scholar
  7. Bowen, H. J. M. 1966. Trace Elements in Biochemistry. Academic Press, New York, 241 pp.Google Scholar
  8. Bremner, J. M., and W. L. Banwart. 1976. Sorption of sulfur gases by soils. Soil Biol. Biochem. 8:79–83.CrossRefGoogle Scholar
  9. Bremner, J. M., and C. G. Steele. 1978. Role of microorganisms in the atmospheric sulfur cycle. Adv. Microb. Ecol. 2:155–201.CrossRefGoogle Scholar
  10. Buchauer, M. J. 1973. Contamination of soil and vegetation near a zinc smelter by zinc, cadmium, copper, and lead. Environ. Sci. Technol. 7:131–135.CrossRefGoogle Scholar
  11. Cannon, H. L. 1974. Natural toxicants of geologic origin and their availability to man. In: P. L. White and D. Robbins (Ed.), Environmental Quality and Food Supply. Futura, New York, pp. 143–163.Google Scholar
  12. Chappelle, E. W., and A. R. Krall. 1961. Carbon monoxide fixation by cell-free extracts of green plants. Biochem. Biophys. Acta 49:578–580.PubMedCrossRefGoogle Scholar
  13. Chow, T. J., and J. L. Earl. 1970. Lead aerosols in the atmosphere: Increasing concentration. Science 169:577–580.PubMedCrossRefGoogle Scholar
  14. Chow, T. J., and M. S. Johnstone. 1965. Lead isotopes in gasoline and aerosols of Los Angeles Basin, California. Science 147:502–503.PubMedCrossRefGoogle Scholar
  15. Connor, J. J., and H. T. Shacklette. 1975. Background Geochemistry of Some Rocks, Soils, Plants, and Vegetables in the Conterminous United States. U.S.D.I., Geological Survey Professional Paper 574-F, Washington, D.C., 168 pp.Google Scholar
  16. Craker, L. E., and W. J. Manning. 1974. SO2 uptake by soil fungi. Environ. Pollut. 6:309–311.CrossRefGoogle Scholar
  17. Ducet, G., and A. I. Rosenberg. 1962. Leaf respiration. Ann. Rev. Plant Physiol. 13:171–200.CrossRefGoogle Scholar
  18. Eriksson, E. 1963. The yearly circulation of sulfur in nature. J. Geophys. Res. 68:4001–4008.Google Scholar
  19. Fang, S. C. 1978. Sorption and transformation of mercury vapor by dry soil. Environ. Sci. Technol. 12:285–288.CrossRefGoogle Scholar
  20. Ghiorse, W. C., and M. Alexander. 1976. Effect of microorganisms on the sorption and fate of sulfur dioxide and nitrogen dioxide in soil. J. Environ. Qual. 5:227–230.CrossRefGoogle Scholar
  21. Heinrichs, H., and R. Mayer. 1977. Distribution and cycling of major and trace elements in two central European forest ecosystems. J. Environ. Qual. 6:402–407.CrossRefGoogle Scholar
  22. Ingersoll, R. B., R. E. Inman, and W. R. Fisher. 1974. Soils potential as a sink for atmospheric carbon monoxide. Tellus 26:151–158.CrossRefGoogle Scholar
  23. Inman, R. E., and R. B. Ingersoll. 1971. Uptake of carbon monoxide by soil fungi. J. Air Pollut. Control Assoc. 21:646–657.Google Scholar
  24. Inman, R. E., R. B. Ingersoll, and E. A. Levy. 1971. Soil: A natural sink for carbon monoxide. Science 172:1229–1231.PubMedCrossRefGoogle Scholar
  25. John, M. K., H. H. Chuah, and C. J. Vandaerhoven. 1972. Cadmium and its uptake by oats. Environ. Sci. Technol. 6:555–557.CrossRefGoogle Scholar
  26. Korte, N. E., J. Skopp, W. H. Fuller, E. E. Niebla, and B. A. Alessii. 1976. Trace element movement in soils: Influence of soil physical and chemical properties. Soil Sci. 122:350–359.CrossRefGoogle Scholar
  27. Lagerwerff, J. V. 1967. Heavy metal contamination of soils. In: N. C. Brady (Ed.), Agriculture and the Quality of Our Environment. Amer. Assoc. Adv. Sci., Public No. 85, Washington, D.C., pp. 343–364.Google Scholar
  28. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton, and N. M. Johnson. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York, 146 pp.CrossRefGoogle Scholar
  29. Linzon, S. N., B. L. Chai, P. J. Temple, R. G. Pearson, and M. L. Smith. 1976. Lead contamination of urban soils and vegetation by emissions from secondary lead industries. J. Air Pollut. Control Assoc. 26:650–654.Google Scholar
  30. Little, P. 1977. Deposition of 2.75, 5.0 and 8.5 μm particles to plant and soil surfaces. Environ. Pollut. 12:293–305.CrossRefGoogle Scholar
  31. McBride, M. B. 1978. Transition metal bonding in humic acid: An ESR study. Soil Sci. 126:200–209.CrossRefGoogle Scholar
  32. Moss, M. R. 1975. Spatial patterns of sulfur accumulation by vegetation and soils around industrial centres. J. Biogeography 2:205–222.CrossRefGoogle Scholar
  33. Nozhevnikova, A. N., and L. N. Yurganov. 1978. Microbiological aspects of regulating the carbon monoxide content in the earth’s atmosphere. Adv. Microbial Ecol. 2:203–244.CrossRefGoogle Scholar
  34. Nyborg, M. 1978. Sulfur pollution and soils. In: J. O. Nriagu (Ed.), Sulfur in the Environment. Part II. Ecological Impacts. Wiley, New York, pp. 359–390.Google Scholar
  35. Parker, G. R., W. W. McFel, and J. M. Kelly. 1978. Metal distribution in forested ecosystems in urban and rural northwestern Indiana. J. Environ. Qual. 7:337–342.CrossRefGoogle Scholar
  36. Petruzelli, G., G. Guidi, and L. Lubrano. 1978. Organic matter as an influencing factor on copper and cadmium adsorption by soils. Water, Air, Soil Pollut. 9:263–269.Google Scholar
  37. Ragaini, R. C., H. R. Ralston, and N. Roberts. 1977. Environmental trace metal contamination in Kellogg, Idaho, near a lead smelting complex. Environ. Sci. Technol. 11:773–781.CrossRefGoogle Scholar
  38. Rasmussen, K. H., M. Taheri, and R. L. Kabel. 1974. Sources and Natural Removal Processes for Some Atmospheric Pollutants. U.S. Environmental Protection Agency, Publica. No. EPA-650/4-74-032, U.S.E.P.A., Washington, D. C., 121 pp.Google Scholar
  39. Reiners, W. A., R. H. Marks, and P. M. Vitousek. 1975. Heavy metals in subalpine and alpine soils of New Hampshire. Oikos 26:264–275.CrossRefGoogle Scholar
  40. Seiler, W. 1974. The cycle of atmospheric CO. Tellus 26:116–135.CrossRefGoogle Scholar
  41. Shriner, D. S., and G. S. Henderson. 1978. Sulfur distribution and cycling in a deciduous forest watershed. J. Environ. Qual. 7:392–397.CrossRefGoogle Scholar
  42. Siccama, T. G., and W. H. Smith. 1978. Lead accumulation in a northern hardwood forest. Environ. Sci. Technol. 12:593–594.CrossRefGoogle Scholar
  43. Siccama, T. G., W. H. Smith, and D. L. Mader. 1980. Changes in lead, zinc, copper, dry weight and organic matter content of the forest floor of white pine stands in central Massachusetts over 16 years. Environ. Sci. Technol. 14:54–56.CrossRefGoogle Scholar
  44. Smith, E. A., and C. I. Mayfield. 1978. Effects of nitrogen dioxide on selected soil processes. Water, Air, Soil Pollut. 9:33–43.CrossRefGoogle Scholar
  45. Smith, K. A., J. M. Bremner, and M. A. Tabatabai. 1973. Sorption of gaseous atmospheric pollutants by soils. Soil Sci. 116:313–319.CrossRefGoogle Scholar
  46. Smith, W. H. 1976. Lead contamination of the roadside ecosystem. J. Air Pollut. Control Assoc. 26:753–766.PubMedGoogle Scholar
  47. Smith, W. H., and T. G. Siccama. 1980. The Hubbard Brook Ecosystem study: Biogeochemistry of lead in the northern hardwood forest. J. Environ. Qual. (in press).Google Scholar
  48. Somers, G. F. 1978. The role of plant residues in the retention of cadmium in ecosystems. Environ. Pollut. 17:287–295.CrossRefGoogle Scholar
  49. Stevenson, F. J. 1972. Role and function of humus in soil with emphasis on adsorption of herbicides and chelation of micronutrients. Bioscience 22:643–650.CrossRefGoogle Scholar
  50. Swank, W. T., and J. E. Douglass. 1977. Nutrient budgets for undisturbed and manipulated hardwood forest ecosystems in the mountains of North Carolina. In: Watershed Research in Eastern North America. Smithsonian Inst., Edgewater, Maryland, pp. 343–364.Google Scholar
  51. Turner, N. C., S. Rich, and P. E. Waggoner. 1973. Removal of ozone by soil. J. Environ. Qual. 2:259–264.CrossRefGoogle Scholar
  52. Tyler, G. 1972. Heavy metals pollute nature, may reduce productivity. Ambio 1:53–59.Google Scholar
  53. Tyler, G. 1978. Leaching rates of heavy metal ions in forest soil. Water, Air, Soil, Pollut. 9:137–148.CrossRefGoogle Scholar
  54. Van Hook, R. I., and W. D. Shults. 1977. Effects of Trace Contaminants from Coal Combustion. Proc. Workshop, Aug. 2–6, 1976, Knoxville, Tenn., U.S. E.R.D.A. Publica. No. 77-64, U.S. Energy Research and Development Administration, Washington, D.C., 79 pp.Google Scholar
  55. Van Hook, R. I., W. F. Harris, and G. S. Henderson. 1977. Cadmium, lead and zinc distributions and cycling in a mixed deciduous forest. Ambio 6:281–286.Google Scholar
  56. Van Hook, R. I., W. F. Harris, G. S. Henderson, and D. E. Reichle. 1973. Patterns of trace-element distribution in a forested watershed. Proc. 1st Annu. NSF Trace Contaminants Conf., Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp. 640–655.Google Scholar
  57. Warren, J. L. 1973. Green Space for Air Pollution Control. Tech. Report No. 50, School of Forest Resources, North Carolina State Univ., Raleigh, North Carolina, 118 pp.Google Scholar
  58. Zimdahl, R. L., and R. K. Skogerboe. 1977. Behavior of lead in soil. Environ. Sci. Technol. 11:1202–1207.CrossRefGoogle Scholar
  59. Zimmerman, P., and R. Rasmussen. 1975. Identification of soil denitrification peak as N2O. Environ. Sci. Technol. 9:1077–1079.CrossRefGoogle Scholar
  60. Zunino, H., and J. P. Martin. 1977a. Metal-binding organic macromolecules in soil: 1 Hypothesis interpreting the role of soil organic matter in the translocation of metal ions from rocks to biological systems. Soil Sci. 123:65–76.CrossRefGoogle Scholar
  61. Zunino, H., and J. P. Martin. 1977b. Metal-binding organic macromolecules in soil: 2. Characterization of the maximum binding ability of the macromolecules. Soil Sci. 123:188–202.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations