Advertisement

Forests as Sources of Hydrocarbons, Particulates, and Other Contaminants

  • William H. Smith
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

In addition to whatever contribution forests may make to the atmospheric burden of carbon, sulfur, and nitrogen oxides, they are known to be important natural sources of hydrocarbons and particulates. Volatile hydrocarbons are released by a variety of woody plants during the course of normal metabolism. Pollen, the most significant particulate contaminant released by forests from the standpoint of human health, is also produced, of course, during normal reproductive metabolism. Hydrocarbon aerosols are viewed as an increasingly important particulate emission from forests. Forest burning, whether naturally occurring or artificially ignited, also produces hydrocarbons, particulates as well as carbon oxides. Even though forest fires may be a natural recurring event in most forest ecosystems, the pollutants generated by this process are not the result of normal metabolism but rather are generated by combustion of forest biomass. As a result, the latter are discussed in Section C.

Keywords

Allergic Rhinitis Forest Fire Tree Pollen Airborne Pollen Allergenic Pollen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. F., R. K. Koppe, and E. Robinson. 1976. Air and surface measurements of constituents of prescribed forest slash smoke. In: Air Quality and Smoke from Urban and Forest Fires. National Academy of Sciences, Washington, D.C., pp. 105–147.Google Scholar
  2. Anderson, E. F., C. S. Dorsett, and E. O. Fleming. 1978. The airborne pollens of Walla Walla, Washington. Ann. Allergy 41:232–235.PubMedGoogle Scholar
  3. Anderson, S. T. 1967. Tree pollen rain in a mixed deciduous forest in South Jutland (Denmark). Rev. Palaeobot. Palynol. 3:267–275.CrossRefGoogle Scholar
  4. Brooks, J. 1971. Some chemical and geochemical studies on sporopollenin. In: J. Brooks, P. R. Grant, M. Muir, P. van Gijzel, and G. Shaw (Eds.), Sporopollenin. Academic Press, New York, pp. 351–407.Google Scholar
  5. Calvert, J. G. 1976. Hydrocarbon involvement in photochemical smog formation in Los Angeles atmosphere. Environ. Sci. Technol. 10:256–262.PubMedCrossRefGoogle Scholar
  6. Cooper, R. W. 1976. The trade-offs between smoke from wild and prescribed forest fires. In: Air Quality and Smoke from Urban and Forest Fires. National Academy of Sciences, Washington, D.C., pp. 19–26.Google Scholar
  7. Cramer, O. P., and H. E. Graham. 1971. Cooperative management of smoke from slash fires. J. For. 69:327–331.Google Scholar
  8. Cramer, O. P., and J. N. Westwood. 1970. Potential impact of air quality restrictions on logging residue burning. U.S.D.A. Forest Service, Pac. S.W. Forest and Range Exp. Sta., Res. Paper PSW-64, 12 pp.Google Scholar
  9. Dacey, J. W. H., and M. J. Klug. 1979. Methane efflux from lake sediments through water lilies. Science 203:1253–1254.PubMedCrossRefGoogle Scholar
  10. Darley, E. F., F. R. Burleson, E. H. Mateer, J. T. Middleton, and V. P. Osterli. 1966. Contribution of burning of agricultural wastes to photochemical air pollution. J. Air Pollut. Control Assoc. 11:685–690.Google Scholar
  11. Darley, E. F., S. Lerman, G. E. Miller, Jr., and J. F. Thompson. 1976. Laboratory testing for gaseous and particulate pollutants from forest and agricultural fuels. In: Air Quality and Smoke from Urban and Forest Fires. National Academy of Sciences, Washington, D.C., pp. 78–89.Google Scholar
  12. Davies, I. W., R. M. Harrison, R. Perry, D. Ratnayaka, and R. A. Wellings. 1976. Municipal incinerator as source of polynuclear aromatic hydrocarbons in environment. Environ. Sci. Technol. 10:451–453.CrossRefGoogle Scholar
  13. Dieterich, J. H. 1971. Air quality aspects of prescribed burning. In: Proc. Prescribed Burning Symposium. U.S.D.A. Forest Service, Southeastern For. Exp. Sta., Asheville, North Carolina, pp. 139–151.Google Scholar
  14. Erdtman, G. 1969. Handbook of Palynology. Hofner, New York, 486 pp.Google Scholar
  15. Evans, L. F., N. K. King, D. R. Packham, and E. T. Stephens. 1974. Ozone measurements in smoke from forest fires. Environ. Sci. Technol. 8:75–76.CrossRefGoogle Scholar
  16. Evans, L. F., I. A. Weeks, A. J. Eccleston, and D. R. Packham. 1977. Photochemical ozone in smoke from prescribed burning of forests. Environ. Sci. Technol. 11:896–900.CrossRefGoogle Scholar
  17. Fahnestock, G. R. 1979. Carbon input to the atmosphere from forest fires. Science 204:209–210.PubMedCrossRefGoogle Scholar
  18. Feldstein, M. 1974. A critical review of regulations for the control of hydrocarbon emissions from stationary sources. J. Air Pollut. Control Assoc. 24: 469–478.PubMedGoogle Scholar
  19. Fritschen, L., H. Bovee, K. Buettner, R. Charlson, L. Monteith, S. Pickford, J. Murphy, and E. Darley. 1970. Slash fire atmospheric pollution. U.S.D.A. Forest Service, Pac. Northwest For. and Range Exp. Sta., Res. Paper No. PNW-97, 42 pp.Google Scholar
  20. Griffin, J. J., and E. D. Goldberg. 1979. Morphologies and origin of elemental carbon in the environment. Science 206:563–565.PubMedCrossRefGoogle Scholar
  21. Hall, J. A. 1972. Forest fuels, prescribed fire, and air quality. U.S.D.A. Forest Service, Pacific Northwest Forest and Range Exp. Sta., Portland, Oregon, 44 pp.Google Scholar
  22. Hanover, J. W. 1966. Genetics of terpenes. 1. Gene control of monoterpene levels in Pinus monticola. Dougl. Heredity 21:73–84.CrossRefGoogle Scholar
  23. Hedin, A., and T. Turner. 1977. What is burned in a prescribed fire? Department of Natural Resources Note No. 16, Olympia, Washington, 7 pp.Google Scholar
  24. Hess, D. 1975. Plant Physiology. Springer-Verlag, New York, 333 pp.Google Scholar
  25. Heuss, J. M., G. J. Nebel, and B. A. D’alleva. 1974. Effects of gasoline aromatic and lead content on exhaust hydrocarbon reactivity. Environ. Sci. Technol. 8:641–647.CrossRefGoogle Scholar
  26. Hyde, H. A. 1951. Pollen output and seed production in forest trees. Quart. J. For. 45:172–175.Google Scholar
  27. Hyde, J. S., N. V. Aroda, C. M. Kumar, and B. S. Moore. 1978. Chronic rhinitis in the pre-school child. Ann. Allergy 41:216–219.PubMedGoogle Scholar
  28. Knights, R. L., D. R. Cronn, and A. L. Crittenden. 1975. Diurnal patterns of several components of urban particulate air pollution. Paper No. 3, Pittsburgh Conference on Analytical Chemistry and Applied Spectoscopy, Cleveland, Ohio, March 3, 1975.Google Scholar
  29. Komarek, E. V., B. B. Komarek, and T. C. Carlysle. 1973. The Ecology of Smoke Particulates and Charcoal Residues from Forest and Grassland Fires: A Preliminary Atlas. Miscell. Publica. No. 3, Tall Timbers Research Sta., Tallahassee, Florida, 75 pp.Google Scholar
  30. Lewis, W. H., and W. E. Imber. 1975. Allergy epidemiology in the St. Louis, Missouri, Area. III. Trees. Ann. Allergy 35:113–119.Google Scholar
  31. Lichti-Federovich, S., and J. C. Ritchie. 1968. Recent pollen assemblages from the western interior of Canada. Rev. Paleobot. Palynol. 7:297–344.CrossRefGoogle Scholar
  32. Maarse, H., and R. E. Kepner. 1970. Changes in composition of volatile terpenes in Douglas fir needles during maturation. J. Agr. Food Chem. 18:1095–1101.CrossRefGoogle Scholar
  33. Mah, R. A., D. M. Ward, L. Baresi, and T. L. Glass. 1977. Biogenesis of methane. Annu. Rev. Microbiol. 31:309–341.PubMedCrossRefGoogle Scholar
  34. Major, R. T., P. Marchini, and A. J. Boulton. 1963. Observations on the production of α-hexanal by leaves of certain plants. J. Biol. Chem. 238:1813–1816.Google Scholar
  35. Malte, P. C. 1975. Pollutant production from forest slash burns. Bulletin No. 339, College of Engineering, Washington State Univ. Pullman, Washington, 32 pp.Google Scholar
  36. Mobley, H. E. 1976. Summary of state regulations as they affect open burning. In: Air Quality and Smoke from Urban and Forest Firest. National Academy of Sciences, Washington, D.C., pp. 206–212.Google Scholar
  37. Moore, P. D., and J. A. Webb. 1978. An Illustrated Guide to Pollen Analysis. Wiley, New York, 133 pp.Google Scholar
  38. National Academy of Sciences. 1977. Ozone and Other Photochemical Oxidants. National Academy of Sciences, Washington, D.C., 719 pp.Google Scholar
  39. Newmark, F. M. 1978. The hay fever plants of Colorado. Ann. Allergy 40:18–24.PubMedGoogle Scholar
  40. Nilsson, S., J. Praglowski, L. Nilsson, and N. O. Kultur. 1977. Atlas of Airborne Pollen Grains and Spores in Northern Europe. Ljungforetagen, Stockholm, Sweden, 159 pp.Google Scholar
  41. O’Brien, R. J., J. R. Holmes, and A. H. Bockian. 1975. Formation of photochemical aerosol from hydrocarbons. Environ. Sci. Technol. 9:568–576.CrossRefGoogle Scholar
  42. Parsons, J. S., and S. Mitzner. 1975. Gas chromatographic method for concentration and analysis of traces of industrial organic pollutants in environmental air and stacks. Environ. Sci. Technol. 9:1053–1058.CrossRefGoogle Scholar
  43. Pharo, J. A. 1976. Aid for maintaining air quality during prescribed burns in the South. U.S.D.A. Forest Service, Res. Paper No. SE-152, Southeastern For. Exp. Sta., Asheville, North Carolina, 11 pp.Google Scholar
  44. Radwan, M. A., and W. D. Ellis. 1975. Clonal variation in monoterpene hydrocarbons of vapors of Douglas-fir foliage. For. Sci. 21:63–67.Google Scholar
  45. Rasmussen, R. A. 1964. Terpenes: Their analysis and fate in the atmosphere. Ph.D. Thesis, Washington, Univ., St. Louis, Missouri.Google Scholar
  46. Rasmussen, R. A. 1970. Isoprene: Identified as a forest-type emission to the atmosphere. Environ. Sci. Technol. 4:667–671.CrossRefGoogle Scholar
  47. Rasmussen, R. A. 1972. What do the hydrocarbons from trees contribute to air pollution? J. Air Pollut. Control Assoc. 22:537–543.PubMedGoogle Scholar
  48. Rasmussen, R. A., and M. W. Holdren. 1972. Analyses of C5 to C10 hydrocarbons in rural atmosphere. Paper No. 72-19, presented at 65th Annual Meeting of the Air Pollution Control Association, Miami Beach, Florida, June 18–22, 1972.Google Scholar
  49. Rasmussen, R. A., and F. W. Went. 1965. Volatile organic material of plant origin in the atmosphere. Proc. Nat. Acad. Sci. U.S. 53:215–220.CrossRefGoogle Scholar
  50. Ripperton, L. A., and D. Lillian. 1971. The effect of water vapor on ozone synthesis in the photo-oxidation of alpha-pinene. J. Air Pollut. Control Assoc. 21:629–635.PubMedGoogle Scholar
  51. Robinson, E., and R. C. Robbins. 1968. Sources, Abundance and Fate of Gaseous Atmospheric Pollutants. Final Report SRI Project PR-6755. Stanford Research Institute, Menlo Park, California.Google Scholar
  52. Rubin, J. M., and N. S. Weiss. 1974. Practical Points in Allergy. Medical Examination, New York, 208 pp.Google Scholar
  53. Sandberg, D. V., S. G. Pickford, and E. F. Darley. 1975. Emissions from slash burning and the influence of flame retardant chemicals. J. Air Pollut. Control Assoc. 25:278–281.Google Scholar
  54. Schwartz, W. 1974. Chemical Characterization of Model Aerosols. EPA-650-3-74-011. Battelle Memorial Institute, Columbus, Ohio, 129 pp.Google Scholar
  55. Seiler, W. 1974. The cycle of atmospheric CO. Tellus 26:116–135.CrossRefGoogle Scholar
  56. Shain, L., and W. E. Hillis. 1972. Ethylene production in Pinus radiata in response to Sirex-Amylostereum attack. Phytopathology 62:1407–1409.CrossRefGoogle Scholar
  57. Silen, R. R., and D. L. Copes. 1972. Douglas-fir seed orchard problems—A progress report. J. For. 70:145–147.Google Scholar
  58. Squillace, A. E. 1971. Inheritance of monoterpene composition in cortical oleoresin of slash pine. For. Sci. 17:381–387.Google Scholar
  59. Stanley, R. G., and H. F. Linskens. 1974. Pollen Biology Biochemistry Management. Springer-Verlag, New York, 307 pp.Google Scholar
  60. Stern, A. C., H. C. Wohlers, R. W. Boubel, and W. P. Lowry. 1973. Fundamentals of Air Pollution. Academic Press, New York, 492 pp.Google Scholar
  61. Tauber, H. 1965. Differential pollen dispersion and the interpretation of pollen diagrams. Danm. Geol. Anders. II R. 89:1–69.Google Scholar
  62. Tauber, H. 1967. Investigations of the mode of pollen transfer in forested areas. Rev. Palaeobot. Palynol. 3:277–287.CrossRefGoogle Scholar
  63. Turk, A., and C. J. D’Angio. 1962. Composition of natural fresh air. J. Air Pollut. Control Assoc. 12:29–33.Google Scholar
  64. U.S.D.A. Forest Service. 1974. Seeds of Woody plants in the United States. Agr. Handbook No. 450, U.S.D.A., Forest Service, Washington, D.C., 833 pp.Google Scholar
  65. U.S. Environmental Protection Agency. 1977. National Air Quality and Emissions Trends Report, 1976. U.S.E.P.A., EPA-450/1-77-002, Research Triangle Park, North Carolina.Google Scholar
  66. Ward, D. E., and E. R. Elliott. 1976. Georgia rural air quality: Effect of agricultural and forestry burning. J. Air Pollut. Control Assoc. 26:216–220.PubMedGoogle Scholar
  67. Weiss, R. E., A. P. Waggoner, R. J. Charlson, and N. C. Ahlquist. 1977. Sulfate aerosol: Its geographical extent in the midwestern and southern United States. Science 195:979–980.PubMedCrossRefGoogle Scholar
  68. Went, F. W. 1955. Air pollution. Sci. Amer. 192:62–72.CrossRefGoogle Scholar
  69. Went, F. W. 1960a. Blue hazes in the atmosphere. Nature 187:641–643.CrossRefGoogle Scholar
  70. Went, F. W. 1960b. Organic matter in the atmosphere and its possible relation to petroleum formation. Proc. Nat. Acad. Sci. U.S. 46:212–221.CrossRefGoogle Scholar
  71. Went, F. W. 1964. The nature of Aitken condensation nuclei in the atmosphere. Proc. Nat. Acad. Sci. U.S. 51:1259–1267.CrossRefGoogle Scholar
  72. Went, F. W., D. B. Slemmons, and H. N. Mozingo. 1967. The organic nature of atmospheric condensation nuclei. Proc. Nat. Acad. Sci. U.S. 58:69–74.CrossRefGoogle Scholar
  73. Wodehouse, R. P. 1945. Hayfever Plants. Chronica Botanica Co., Waltham, Massachusetts, 245 pp.Google Scholar
  74. Wong, C. S. 1978. Atmospheric input of carbon dioxide from burning wood. Science 200:197–199.PubMedCrossRefGoogle Scholar
  75. Yoo, T., E. Spitz, and J. L. McGerity. 1975. Conifer pollen allergy: Studies of immunogencity and cross antigenicity of conifer pollens in rabbit and man. Ann. Allergy 34:87–93.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations