Role of Forests in Major Element Cycles: Carbon, Sulfur, and Nitrogen

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)


Despite the fundamental and enormous importance of carbon, sulfur, and nitrogen to the biota, our appreciation of the cycling, residence, and flux of these elements among various ecosystems, oceans, and the atmosphere is incomplete. Despite our deficiencies efforts are being made to refine our understanding of major element cycles and to more accurately estimate global budgets. This is especially important for those interested in air pollution as compounds containing these elements are extremely significant air contaminants under certain circumstances. Forest ecosystems, because of their extensive distribution and their varied functions, play important roles in global element cycles. The imprecision of our estimates of global nutrient budgets is large and conclusions and predictions based on them must be qualified and cautious.


Forest Soil Forest Ecosystem Hydrogen Sulfide Nitrogen Oxide Nitrogen Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. F., S. O. Farwell, M. R. Pack, and W. L. Bamesberger. 1979. Preliminary measurements of biogenic sulfur-containing gas emissions from soils. Air Pollut. Control Assoc. 29:380–383.Google Scholar
  2. Adams, I. A. S., M. S. M. Mantovani, and L. L. Lundell. 1977. Wood versus fossil fuel as a source of excess carbon dioxide in the atmosphere: A preliminary report. Science 196:54–56.PubMedCrossRefGoogle Scholar
  3. Alexander, M. 1974. Microbial formation of environmental pollutants. Adv. Applied Microbiol. 18:1–73.CrossRefGoogle Scholar
  4. Armson, K. A. 1972. Fertilizer distribution and sampling techniques in the aerial fertilization of forests. Tech. Report No. 11, University of Toronto, Ontario, Canada, 27 pp.Google Scholar
  5. Armson, K. A., H. H. Krause, and G. F. Weetman. 1975. Fertilization response in the northern coniferous forest. In: B. Bernier and C. H. Winget (Eds.), Forest Soils and Forest Land Management, Proc. Fourth North Amer. Forest Soils Conf., Laval Univ., Quebec, Les Presses de l’Université Laval, Quebec, Canada, pp. 449–466.Google Scholar
  6. Aubertin, G. M., D. E. Smith, and J. H. Patric. 1973. Quantity and quality of streamflow after urea fertilization on a forested watershed: First-year results. In: Forest Fertilization Symp. Proc., U.S.D.A. Forest Service, Genl. Tech. Report NE-3, Upper Darby, Pennsylvania, pp. 88–100.Google Scholar
  7. Ayotade, K. A. 1977. Kinetics and reactions of hydrogen sulfide in solution of flooded rice soils. Plant Soil 46:381–389.CrossRefGoogle Scholar
  8. Banwart, W. L., and J. M. Bremner. 1976. Evolution of volatile sulfur compounds from soils treated with sulfur containing organic materials. Soil Biol. Biochem. 8:439–443.CrossRefGoogle Scholar
  9. Blackmer, A. M., and J. M. Bremner. 1979. Stimulatory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol. Biochem. 11:313–315.CrossRefGoogle Scholar
  10. Bolin, B. 1977. Changes of land biota and their importance for the carbon cycle. Science 196:613–615.PubMedCrossRefGoogle Scholar
  11. Bolin, B., E. T. Degens, S. Kempe, and P. Ketner (Eds.). 1977. The Global Carbon Cycle. SCOPE Report 13. Wiley, New York, 491 pp.Google Scholar
  12. Bremner, J. M. 1977. Role of organic matter in volatilization of sulfur and nitrogen from soils. In: Proceedings of Symposium on Soil Organic Matter Studies, Vol. 11, pp. 229–240, Braunschweig, Federal Republic of Germany Sept. 6–10, 1976. Internat. Atomic Energy Agency, Vienna.Google Scholar
  13. Bremner, J. M., and A. M. Blackmer. 1978. Nitrous oxide: Emission from soils during nitrification of fertilizer nitrogen. Science 199:295–296.PubMedCrossRefGoogle Scholar
  14. Bremner, J. M., and C. G. Steele. 1978. Role of microorganisms in the atmospheric sulfur cycle. Adv. Microbial Ecol. 2:155–201.CrossRefGoogle Scholar
  15. Broecker, W. S., T. Takahashi, H. J. Simpson, and T. H. Peng. 1979. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–418.PubMedCrossRefGoogle Scholar
  16. Burns, R. S., and R. F. W. Hardy. 1975. Nitrogen Fixation in Bacteria and Higher Plants. Springer-Verlag, New York, 189 pp.CrossRefGoogle Scholar
  17. Crutzen, P. J. 1974. Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus 26:47–49.CrossRefGoogle Scholar
  18. DeBell, D. S. 1975. Fertilize western hemlock—yes or no? In: Global Forestry and the Western Role, Western Forestry and Conservation Association Proc. Portland, Oregon, pp. 140–143.Google Scholar
  19. Deevey, E. S. 1973. Sulfur, nitrogen and carbon in the biosphere. In: G. M. Woodwell and E. V. Pecan (Eds.), Carbon and the Biosphere, Proceedings 24th Brookhaven Symposium in Biology, Upton, N.Y., May 16–18, 1972. Tech. Inform. Center, U.S. Atomic Energy Commission, pp. 182–190.Google Scholar
  20. Delwiche, C. C., and B. A. Bryan. 1976. Denitrification. Annu. Rev. Microbiol. 30:241–262.PubMedCrossRefGoogle Scholar
  21. Ember, L. R. 1978. Global environmental problems: Today and tomorrow. Environ. Sci. Technol. 12:874–876.CrossRefGoogle Scholar
  22. Eriksson, E. 1963. The yearly circulation of sulfur in nature. J. Geophys. Res. 68:4001–4008.Google Scholar
  23. Farquhar, G. D., R. Wetselaar, and P. M. Firth. 1979. Ammonia volatilization from senescing leaves of maize. Science 203:1257–1258.PubMedCrossRefGoogle Scholar
  24. Ferguson, E. E., and W. F. Libby. 1971. Mechanism for the fixation of nitrogen by lightning. Nature 229:37–38.PubMedCrossRefGoogle Scholar
  25. Focht, D. D., and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Adv. Microbial Ecol. 1:135–214.Google Scholar
  26. Friend, J. P. 1973. The global sulfur cycle. In: S. I. Rasool (Ed.), Chemistry of the Lower Atmosphere. Plenum, New York, pp. 177–201.Google Scholar
  27. Galloway, J. N., G. E. Likens, and E. S. Edgerton. 1976. Hydrogen ion speciation in the acid precipitation of the northeastern United States. In: L. S. Dochinger and T. A. Seliga (Eds.), Proc. First International Symp. on Acid Precipitation, U.S.D.A. Forest Service Genl. Tech. Report NE-23, Upper Darby, Pennsylvania, pp. 383–396.Google Scholar
  28. Graedel, T. E. 1979. The oxidation of atmospheric sulfur compounds. In: Proc. MASS-APCA Technical Conf. on the Question of Sulfates, Philadelphia, Pennsylvania, April 13–14, 1978 (in press).Google Scholar
  29. Granat, L., H. Rodhe, and R. O. Hallberg. 1976. The global sulphur cycle. In: B. H. Svensson and R. Söderlund (Eds.), Nitrogen, Phosphorus and Sulphur, SCOPE Report No. 7, Ecological Bulletins (Stockholm) 22:89–134.Google Scholar
  30. Hargrove, W. L., and D. E. Kissel. 1979. Ammonia volatilization from surface application of urea in the field and laboratory. Soil Sci. Soc. Am. J. 43: 359–363.CrossRefGoogle Scholar
  31. Hill, F. B. 1973. Atmospheric sulfur and its link to the biota. In: G. M. Woodwell and E. V. Pecan (Eds.), Carbon and the Biosphere, Proc. 24th Brookhaven Symposium in Biology, Upton, N.Y., May 16–18, 1972. Tech. Inform. Center, U.S. Atomic Energy Commission, pp. 159–181.Google Scholar
  32. Hitchcock, D. R. 1975. Biogenic contributions to atmospheric sulfate levels. Second Annual Conference on Water Reuse, Chicago.Google Scholar
  33. Hitchcock, D., and A. E. Wechsler. 1972. Biogenic Cycling of Atmospheric Trace Gases. Final Report, NASA Contract HASW-2128, Arthur D. Little, Inc., Cambridge, Massachusetts.Google Scholar
  34. Hutchinson, G. L., and A. R. Mosier. 1979. Nitrous oxide emissions from an irrigated cornfield. Science 205:1125–1127.PubMedCrossRefGoogle Scholar
  35. Junge, C. E. 1958. The distribution of ammonia and nitrate in rainwater over the United States. Trans. Am. Geophys. Union 39: 241–248.Google Scholar
  36. Junge, C. E. 1963. Air Chemistry and Radioactivity. Academic Press, New York, pp. 59–74.Google Scholar
  37. Kellogg, W. W., R. D. Cadle, E. R. Allen, A. L. Lazus, and E. A. Martell. 1972. The sulfur cycle. Science 175:587–596.PubMedCrossRefGoogle Scholar
  38. Kim, C. M. 1973. Influence of vegetation types on the intensity of ammonia and nitrogen dioxide liberation from soil. Soil Biol. Biochem. 5:163–166.CrossRefGoogle Scholar
  39. Kittrick, J. A. 1976. Control of Zn2+ in the soil solution by sphalerite. Soil Sci. Soc. Am. J. 40:314–317.CrossRefGoogle Scholar
  40. Marchesani, V. J., T. Towers, and H. C. Wohlers. 1970. Minor sources of air pollutant emissions. J. Air Pollut. Control. Assoc. 20:19–22.PubMedGoogle Scholar
  41. Maroulis, P. J., and A. R. Bandy. 1977. Estimate of the contribution of biologically produced dimethyl sulfide to the global sulfur cycle. Science 196:647–648.PubMedCrossRefGoogle Scholar
  42. McConnell, J. C. 1973. Atmospheric ammonia. J. Geophys. Res. 75:7812–7821.CrossRefGoogle Scholar
  43. Miller, R. E., and D. L. Reukema. 1974. Seventy-five-year-old Douglas-fir on high quality site respond to nitrogen fertilizer. U.S.D.A. Forest Service, Res. Note PNW-281, Portland, Oregon, 8 pp.Google Scholar
  44. Miller, R. E., and D. L. Reukema. 1977. Urea fertilizer increases growth of 20-year-old, thinned Douglas-fir on a poor quality site. U.S.D.A. Forest Service, Res. Note PNW-291, Portland, Oregon, 8 pp.Google Scholar
  45. Morrison, I. K., F. Hegye, N. W. Foster, D. A. Winston, and T. L. Tucker. 1976. Fertilizing semimature jack pine (Pinus banksiana Lamb.) in northwestern Ontario: Fourth-year results. Report No. 0-X-240, Can. For. Service, Dept. Environment, Sault Ste. Marie, Ontario, Canada, 42 pp.Google Scholar
  46. Nozhevnikova, A. N., and L. N. Yurganov. 1978. Microbiological aspects of regulating the carbon monoxide content in the earth’s atmosphere. Adv. Microbial. Ecol. 2:203–244.CrossRefGoogle Scholar
  47. Rasmussen, K. H., M. Taheri, and R. L. Kabel. 1975. Global emissions and natural processes for removal of gaseous pollutants. Water, Air, Soil Pollut. 4:33–64.CrossRefGoogle Scholar
  48. Reichle, D. E., B. E. Dinger, W. T. Edwards, W. F. Harris, and P. Sollins. 1973. Carbon flow and storage in a forest ecosystem. In: G. M. Woodwell and E. V. Pecan (Eds.), Carbon and the Biosphere, Proc. 24th Brookhaven Symposium in Biology, Upton, N.Y., May 16–18, 1972. Tech. Inform. Center, U.S. Atomic Energy Commission, pp. 182–190.Google Scholar
  49. Robinson, E., and R. C. Robbins. 1968. Sources, Abundance and Fate of Gaseous Atmospheric Pollutants. Final Report SRI Project PR-6755. Stanford Research Institute, Menlo Park, California.Google Scholar
  50. Robinson, E., and R. C. Robbins. 1975. Gaseous atmospheric pollutants from urban and natural sources. In: S. F. Singer (Ed.), The Changing Global Environment. Reidel, Dordrecht, pp. 111–123.CrossRefGoogle Scholar
  51. Siegenthaler, U., and H. Oeschger. 1978. Predicting future atmospheric carbon dioxide levels. Science 199:388–395.PubMedCrossRefGoogle Scholar
  52. Söderlund, R., and B. H. Svensson. 1976. The global nitrogen cycle. In: B. H. Svensson and R. Söderlund (Eds.), Nitrogen, Phosphorus and Sulphur-Global Cycles. SCOPE Report No. 7. Ecological Bulletin No. 22. Royal Swedish Academy of Sciences, Stockholm, pp. 23–73.Google Scholar
  53. Spedding, D. J. 1974. Air Pollution. Clarendon Press, Oxford, 76 pp.Google Scholar
  54. Spurr, S. H., and H. J. Vaux. 1976. Timber: Biological and economic potential. Science 191:752–756.PubMedCrossRefGoogle Scholar
  55. Stuiver, M. 1978. Atmospheric carbon dioxide and carbon reservoir changes. Science 199:253–258.PubMedCrossRefGoogle Scholar
  56. U.S. Environmental Protection Agency. 1976. Diagnosing Vegetation Injury Caused by Air Pollution. Contract No. 68-02-1344. U.S.E.P.A., Air Pollution Training Institute, Research Triangle Park, North Carolina.Google Scholar
  57. Volk, G. M. 1959. Volatile loss of ammonia following surface application of urea to turf or bare soils. Agron. J. 51:756–749.CrossRefGoogle Scholar
  58. Volk, G. M. 1970. Gaseous loss of ammonia from prilled urea applied to slash pine. Soil Sci. Soc. Am. Proc. 34:513–516.CrossRefGoogle Scholar
  59. Webster, S. R., D. S. DeBell, K. N. Wiley, and W. A. Atkinson. 1976. Fertilization of western hemlock. Proc. Western Hemlock Manage. Conf., Univ. Washington, Seattle, Washington, pp. 247–251.Google Scholar
  60. Whittaker, R. H. 1975. Communities and Ecosystems. Macmillan, New York, 385 pp.Google Scholar
  61. Wolff, G. T. 1979. The question of sulfates: A conference summary. J. Air Pollut. Control Assoc. 29:26–27.PubMedGoogle Scholar
  62. Wollum, A. G., II, and C. B. Davey. 1975. Nitrogen accumulation, transformation transport. In: B. Bernier and C. H. Winget (Eds.), Forest Soils and Forest Land Management, Proc. Fourth North Amer. Forest Soils Conf., Laval Univ., Quebec, Les Presses de l’Université Laval, Quebec, Canada, pp. 67–106.Google Scholar
  63. Wong, C. S. 1978. Atmospheric input of carbon dioxide from burning wood. Science 200:197–200.PubMedCrossRefGoogle Scholar
  64. Woodwell, G. M. 1978. The carbon dioxide question. Sci. Amer. 238:34–43.CrossRefGoogle Scholar
  65. Woodwell, G. M., R. H. Whittaker, W. A. Reiners, G. E. Likens, C. C. Delwiche, and D. B. Botkin. 1978. The biota and the world carbon budget. Science 199: 141–146.PubMedCrossRefGoogle Scholar
  66. Zinder, S. H., and T. D. Brock. 1978. Microbial transformations of sulfur in the Environment. Part II. In: J. O. Nriagu (Ed.), Ecological Impacts. Wiley, New York, pp. 445–466.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations