Advertisement

Forest Ecosystem Destruction: A Localized Response to Excessive Air Pollution

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Under conditions of excessive dose, that is, atypically high atmospheric concentrations of one or more contaminants for extended (or continuous) time periods, the impact on forest ecosystems may be very severe and dramatic. This response is designated a Class III interaction. The reaction of vegetation in this case is characterized by severe morbidity and mortality caused directly by air pollutants.

Keywords

Forest Ecosystem Sulfur Dioxide Hydrogen Fluoride Tree Stratum Sulfur Dioxide Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. F., D. J. Mayhew, R. M. Gnagy, E. P. Rickey, R. K. Koppe, and I. W. Allan. 1952. Atmospheric pollution in the ponderosa pine blight area. Spokane County, Washington. Ind. Eng. Chem. 44:1356–1365.CrossRefGoogle Scholar
  2. Berry, C. R. 1961. White pine emergence tipburn, a physiogenic disturbance. U.S.D.A. Forest Service, Southeast For. Exp. Sta. Paper No. 130, 8 pp.Google Scholar
  3. Berry, C. R., and L. A. Ripperton. 1963. Ozone, a possible cause of white pine emergence tipburn. Phytopathology 53:552–557.Google Scholar
  4. Bormann, F. H., G. E. Likens, and J. S. Eaton. 1969. Biotic regulation of particulate and solution losses from a forest ecosystem. BioScience 19:600–610.CrossRefGoogle Scholar
  5. Bormann, F. H., G. E. Likens, T. G. Siccama, R. S. Pierce, and J. S. Eaton. 1974. The effect of deforestation on ecosystem export and the steady-state condition at Hubbard Brook. Ecol. Monogr. 44:255–277.CrossRefGoogle Scholar
  6. Carlson, C. E. 1972. Monitoring fluoride pollution in Flathead National Forest and Glacier National Park. U.S.D.A. Forest Service, Div. State and Private Forestry, Missoula, Montana, 25 pp.Google Scholar
  7. Carlson, C. E. 1974. Sulfur damage to Douglas-fir near a pulp and paper mill in western Montana. U.S.D.A. Forest Service, Div. State and Private Forestry Publica. No. 74-13, 41 pp.Google Scholar
  8. Curtis, J. T. 1956. The modification of mid-latitude grasslands and forests by man. In: W. L. Thomas (Ed.), Man’s Role in Changing the Face of the Earth. Univ. Chicago Press, Chicago, Illinois, pp. 721–736.Google Scholar
  9. Décourt, N. 1977. Premier inventaire des effets de la pollution atmosphérique sur le massif forestier de Roumare. Biologie et Foret, pp. 435–447.Google Scholar
  10. Errington, J. C., and J. V. Thirgood. 1971. Search through old papers helps reconstruct recovery at Anyox from fume damage and forest fires. Northern Miner Annu. Rev., pp. 72–75.Google Scholar
  11. Farrar, J. F., J. Relton, and A. J. Rutter. 1977. Sulfur dioxide and the scarcity of Pinus sylvestris in the industrial Pennines. Environ. Pollut. 14:63–68.CrossRefGoogle Scholar
  12. Gilbert, O. L. 1975. Effects of air pollution on landscape and land-use around Norwegian aluminum smelters. Environ. Pollut. 8:113–121.CrossRefGoogle Scholar
  13. Gordon, A. G., and E. Gorham. 1963. Ecological aspects of air pollution from an iron-sintering plant at Wawa, Ontario. Can. J. Bot. 41:1063–1078.CrossRefGoogle Scholar
  14. Gorham, E. 1970. Air pollution from metal smelters. Naturalist 21:12–15, 20–25.Google Scholar
  15. Hällgren, J. E., and B. Nyman. 1977. Observations on trees of Scots pine (Pinus silvestris L.) and lichens around a HF and SO2 emission source. Stud. For. Suec. No. 137, 40 pp.Google Scholar
  16. Haywood, J. K. 1905. Injury to vegetation by smelter fumes. U.S.D.A., Bur. Chem. Bull. No. 89, 23 pp.CrossRefGoogle Scholar
  17. Haywood, J. K. 1910. Injury to vegetation and animal life by smelter wastes. U.S.D.A., Bur. Chem. Bull. No. 113, 63 pp.Google Scholar
  18. Hedgcock, G. G. 1914. Injuries by smelter smoke in southeastern Tennessee. J. Wash. Acad. Sci. 4:70–71.Google Scholar
  19. Hepting, G. H. 1971. Air pollution and trees. In: W. H. Matthews, F. E. Smith, and E. D. Goldberg (Eds.), Man’s Impact on Terrestrial and Oceanic Ecosystems. MIT Press, Cambridge, Massachusetts, pp. 116–129.Google Scholar
  20. Hocking, D., P. Kuchar, J. A. Plambeck, and R. A. Smith. 1978. The impact of gold smelter emissions on vegetation and soils of a sub-arctic forest-tundra transition ecosystem. J. Air Pollut. Control Assoc. 28:133–137.Google Scholar
  21. Holling, C. S. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. System. 4:1–23.CrossRefGoogle Scholar
  22. Hursh, C. R. 1948. Local climate in the copper basin of Tennessee as modified by removal of vegetation. U.S.D.A. Circular No. 774, 38 pp.Google Scholar
  23. Hutchinson, T. C., and L. M. Whitby. 1976. The effects of acid rainfall and heavy metal particulates on a boreal forest ecosystem near the Sudbury smelting region of Canada. In: L. S. Dochinger and T. A. Seliga (Eds.), Proc. 1st Internat. Symp. Acid Precipitation and the Forest Ecosystem, U.S.D.A. Forest Service, Genl. Tech. Rept. No. NE-23, Upper Darby, Pennsylvania, pp. 745–765.Google Scholar
  24. Jung, E. 1968. Bestandesumwandlungen im Rauchschadensgebiete von Ranshofen. Miedzynarodowej Konf. Wplyw. Zanieczyszczen Powietrza Na Lasy, 6th, Katowice, 1968, pp. 407–413.Google Scholar
  25. Keller, T. 1973. Report on the IUFRO meeting “Air pollution effects on forests.” Sopron, Hungary, Oct. 9–14, 1972. Eur. J. For. Pathol. 3:56–60.CrossRefGoogle Scholar
  26. Knabe, W. 1970. Distribution of Scots pine forest and sulfur dioxide emissions in the Ruhr area. Staub Reinhalt. Luft. 30:43–47.Google Scholar
  27. Langford, A. N., and M. F. Buell. 1969. Integration, identity and stability in the plant association. Adv. Ecol. Res. 6:83–135.CrossRefGoogle Scholar
  28. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton, and N. M. Johnson. 1977. Biogeochemistry of a Forested Ecosystem. Springer-Verlag, New York, 146 pp.CrossRefGoogle Scholar
  29. Linzon, S. N. 1965. Semimature-tissue needle blight of eastern white pine and local weather. Ont. Dept. Forestry, Res. Lab. Inform. Rept. No. O-X-l.Google Scholar
  30. Linzon, S. N. 1978. Effects of airborne sulfur pollutants on plants. In: J. O. Nriagu (Ed.), Sulfur in the Environment, Part II, Ecological Impacts. Wiley, New York, pp. 109–162.Google Scholar
  31. Margalef, R. 1963. On certain unifying principles in ecology. Am. Natur. 97: 357–374.CrossRefGoogle Scholar
  32. May, R. M. 1973. Stability and Complexity in Model Ecosystems. Princeton Univ. Press, Princeton, New Jersey, 235 pp.Google Scholar
  33. McClenahen, J. R. 1978. Community changes in a deciduous forest exposed to air pollution. Can. J. For. Res. 8:432–438.CrossRefGoogle Scholar
  34. Miller, P. R., and J. R. McBride. 1975. Effects of air pollutants on forests. In: J. B. Mudd and T. T. Kozlowski (Eds.), Responses of Plants to Air Pollution. Academic Press, New York, pp. 195–235.Google Scholar
  35. Robak, H. 1969. Aluminum plants and conifers in Norway. In: Air Pollution Proc. 1st European Congr. on the Influence of Air Pollution on Plants and Animals. Centre for Agric. Publish. and Documentation, Wageningen, The Netherlands, pp. 27–31.Google Scholar
  36. Rochow, J. J. 1978. Measurements and vegetational impact of chemical drift from mechanical draft cooling towers. Environ. Sci. Technol. 12:1379–1383.CrossRefGoogle Scholar
  37. Scheffer, T. C., and G. G. Hedgcock. 1955. Injury to northwestern forest trees by sulfur dioxide from smelters. U.S.D.A. Forest Service, Tech. Bull. No. 1117, 49 pp.Google Scholar
  38. Scurfield, G. 1960. Air pollution and tree growth. For. Abstr. 21:339–347, 517–528.Google Scholar
  39. Skelly, J. M., and J. W. Jonston. 1978. A status report of the deterioration of eastern white pine due to oxidant air pollution in the Blue Ridge Mountains of Virginia. Proc. Amer. Phytopathol. Soc. 5:398.Google Scholar
  40. Sundman, V., V. Huhta, and S. Niemela. 1978. Biological changes in northern spruce forest soil after clear-cutting. Soil Biol. Biochem. 10:393–397.CrossRefGoogle Scholar
  41. Treshow, M., F. K. Anderson, and F. Hamer. 1967. Responses of Dougas fir to elevated atmospheric fluorides. For. Sci. 13:114–120.Google Scholar
  42. U.S.D.A. Forest Service. 1973. Silvicultural Systems for the Major Forest Types of the United States. Agr. Handbk. No. 445. U.S.D.A. Forest Service, Washington, D.C., 114 pp.Google Scholar
  43. U.S.D.A. Forest Service. 1978. Forest Insect and Disease Conditions in the United States—1976. U.S.D.A. Forest Service, Washington, D.C., 40 pp.Google Scholar
  44. Whittaker, R. H. 1965. Dominance and diversity in land plant communities. Science 147:250–260.PubMedCrossRefGoogle Scholar
  45. Whittaker, R. H., and G. M. Woodwell. 1978. Retrogression and coenocline distance. In: R. H. Whittaker (Ed.), Ordination of Plant Communities. Dr. W. Junk, The Hague, The Netherlands, pp. 51–70.CrossRefGoogle Scholar
  46. Wood, C. W., and T. N. Nash. 1976. Copper smelter effluent effects on Sonoran desert vegetation. Ecology 57:1311–1316.CrossRefGoogle Scholar
  47. Woodwell, G. M. 1970. Effects of pollution on the structure and physiology of ecosystems. Science 168:429–433.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations