Advertisement

Class II Summary: Forest Responds by Exhibiting Alterations in Growth, Biomass, Species Composition, Disease, and Insect Outbreaks

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

In the presence of a sufficient dose of an air pollutant, forest trees will be adversely impacted. When this occurs the threshold between Class I and Class II interactions is crossed. At intermediate dose, the specific contaminant concentration and time of exposure varying greatly with specific pollutant and forest situation, the influence on individual forest components may range from extremely subtle to visibly dramatic. Chapters 7 through 14 have reviewed the evidence available to support the hypotheses that intermediate air pollution loads may alter or inhibit forest tree reproduction, alter forest nutrient cycling, alter tree metabolism, or change forest stress conditions by influencing insect pests, microbial pathogens, and by directly damaging foliar tissue. All but the latter of these impacts would be extremely subtle, visibly asymptomatic, and detectable only by very careful forest monitoring.

Keywords

Forest Ecosystem Sulfur Dioxide Radial Growth Forest Growth Diameter Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen, G., R. Horntvedt, and B. Tveite. 1976. Impacts of acid precipitation on coniferous forest ecosystems. In: L. S. Dochinger and T. A. Seliga (Eds.), 1st International Symp. Acid Precipitation and the Forest Ecosystem. U.S.D.A. Forest Service, Upper Darby, Pennsylvania, pp. 991–1009.Google Scholar
  2. Abrahamsen, G., K. Bjor, R. Horntvedt, and B. Tveite. 1976. Effects of acid precipitation on coniferous forest. In: F. H. Braekke (Ed.), Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway. SNSF Project Research Resport No. 6, Oslo, Norway, pp. 37–63.Google Scholar
  3. Bohne, H. 1963. Schädlihkeit von Staub aus Zementwerken für Waldbestände. Allg. Forstz. 18:107–111.Google Scholar
  4. Bolin, B., Ed. 1971. Air Pollution Across National Boundaries: The Impact on the Environment of Sulfur in Air and Precipitation. Report of the Swedish Preparatory Committee for the U.N. Conference on Human Environment. Stockholm, Sweden, 96 pp.Google Scholar
  5. Bormann, F. H., and G.E. Likens. 1979. Catastrophic disturbance and the steady state in northern hardwood forests. Am. Scei. 67:660–669.Google Scholar
  6. Brandt, C. J., and R. W. Rhoades. 1973. Effects of limestone dust accumulation on lateral growth of forest trees. Environ. Pollut. 4:207–213.CrossRefGoogle Scholar
  7. Carlson, C. E. 1978. Fluoride induced impact in a coniferous forest near the Anaconda aluminum plant in northwestern Montana. Unpublished Ph.D. Thesis. Univ. Montana, Missoula, Montana, 165 pp.Google Scholar
  8. Carlson, R. W., and F. A. Bazzaz. 1977. Growth reduction in American sycamore (Plantanus occidentalis L.) caused by Pb-Cd interaction. Environ. Pollut. 12: 243–253.CrossRefGoogle Scholar
  9. Carlson, C. E., and W. P. Hammer. 1974a. Impact of fluorides and insects on radial growth of lodgepole pine near an aluminum smelter in northwestern Montana. U.S.D.A. Forest Service, Northern Region Rept. No. 74–25, 14 pp.Google Scholar
  10. Carlson, C. E., and W. P. Hammer. 1974b. Impact of fluorides and insects on radial growth of lodgepole pine near an aluminum smelter in northwestern Montana. U.S.D.A. Forest Service, Northern Region Rept. No. 74–26, 14 pp.Google Scholar
  11. Cobb, F. W., and R. W. Stark. 1970. Decline and mortality of smog-injured ponderosa pine. J. For. 68:147–149.Google Scholar
  12. Cogbill, C. V. 1976. The effect of acid precipitation on tree growth in eastern North America. In: L. S. Dochinger and T. A. Seliga (Eds.), 1st Internat. Symp. Acid Precipitation and the Forest Ecosystem. U.S.D.A. Forest Service, Upper Darby, Pennsylvania, pp. 1027–1032.Google Scholar
  13. Cogbill, C. V. 1977. The effect of acid precipitation on tree growth in eastern North America. Water, Air, Soil Pollut. 8:89–93.Google Scholar
  14. Dahl, E., and O. Skre. 1971. An investigation of the effect of acid precipitation on land productivity. Konferens om avsvavling, Stockholm, Nov. 11, 1969. Nordforsk, Miljovardssedretariatet, Pub. 1971, 1:27–39.Google Scholar
  15. Darley, E. F. 1966. Studies on the effect of cement-kiln dust on vegetation. J. Air. Pollut. Control Assoc. 16:145–150.PubMedGoogle Scholar
  16. Davis, D. R. 1972. Sulfur dioxide fumigation of soybeans: Effect on yield. J. Air Pollut. Control Assoc. 22:12.Google Scholar
  17. Fisher, R. F. 1980. Allelopathy: A potential cause of regeneration failure. J. For. 78:346–350.Google Scholar
  18. Frissell, S. S., Jr. 1973. The importance of fire as a natural ecological factor in Itasca State Park, Minnesota. Quat. Res. 3:397–407.CrossRefGoogle Scholar
  19. Fritts, H. C. 1976. Tree Rings and Climate. Academic Press, New York, 567 pp.Google Scholar
  20. Hajdük, J., and M. Ruzicka. 1968. Das Studium der Schäden an Wildpflanzen und Pflanzengesellschaften verursacht durch Luftverunreinigung. In: Air Pollution, Wageningen, Pudoc, pp. 183–192.Google Scholar
  21. Harkov, R., and E. Brennan. 1979. An ecophysiological analysis of the response of trees to oxidant pollution. J. Air Pollut. Control Assoc. 29:157–161.Google Scholar
  22. Harward, M., and M. Treshow. 1975. Impact of ozone on the growth and reproduction of understory plants in the aspen zone of western U.S.A. Environ. Conserva. 2:17–23.CrossRefGoogle Scholar
  23. Hayes, E. M., and J. M. Skelly. 1977. Transport of ozone from the Northeast U.S. into Virginia and its effect on eastern white pines. Plant Dis. Reptr. 61: 778–782.Google Scholar
  24. Heagle, A. S., D. E. Body, and E. K. Pounds. 1972. Effect of ozone on yield of sweet com. Phytopathology 62:683–687.CrossRefGoogle Scholar
  25. Heagle, A. S., R. B. Philbeck, and W. M. Knott. 1979. Thresholds for injury, growth, and yield loss caused by ozone on field corn hybrids. Phytopathology 69:21–26.CrossRefGoogle Scholar
  26. Heck, W. W., A. S. Heagle, and E. B. Cowling. 1977. Air pollution: Impact on plants. In: New Directions in Century Three: Strategies for Land and Water Use. Proc. 32nd Annual Meeting, Soil Conservation Soc. Amer., Aug. 7–10, 1977, Richmond, Virginia, pp. 193–202.Google Scholar
  27. Heinselman, M. L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat. Res. 3:329–383.CrossRefGoogle Scholar
  28. Henry, J. D., and J. M. A. Swan. 1974. Reconstructing forest history from live and dead plant material: An approach to the study of forest succession in southwest New Hampshire. Ecology 55:772–783.CrossRefGoogle Scholar
  29. Horntvedt, R. 1970. SO2 injury to forests. J. For. Utiliz. 78:237–286.Google Scholar
  30. Jensen, K. F. 1973. Response of nine forest tree species to chronic ozone fumigation. Plant Dis. Reptr. 57:914–917.Google Scholar
  31. Jensen, K. F., L. S. Dochinger, B. R. Roberts, and A. M. Townsend. 1976. Pollution responses. In: J. P. Miksche (Ed.), Modern Methods in Forest Genetics, Springer-Verlag, New York, pp. 189–215.Google Scholar
  32. Jones, H. C., N. L. Lacasse, W. S. Liggett, and F. Weatherford. 1977. Experimental Air Exclusion System for Field Studies of SO2 Effects on Crop Productivity. U.S. Environmental Protection Agency, Publica. No. EPA-600/7-77-122, Washington, D.C., 67 pp.Google Scholar
  33. Jonsson, B. 1976. Soil acidification by atmospheric pollution and forest growth. In: L. S. Dochinger and T. A. Seliga (Eds.), Proc. 1st Internat. Symp. Acid Precipitation and the Forest Ecosystem. U.S.D.A. Forest Service, Upper Darby, Pennsylvania, pp. 837–842.Google Scholar
  34. Jonsson, B., and R. Sundberg. 1972. Has the acidification by atmospheric pollution caused a growth reduction in Swedish forests? Royal College of Forestry, Res. Note No. 20, Stockholm, Sweden, 48 pp.Google Scholar
  35. Keller, T. 1978. Wintertime atmospheric pollutants—Do they affect the performance of deciduous trees in the ensuing growing season? Environ. Pollut. 16: 243–247.CrossRefGoogle Scholar
  36. Keller, T. 1980. The effect of a continuous springtime fumigation with SO2 and CO2 uptake and structure of the annual ring in spruce. Can. J. For. Res. (in press).Google Scholar
  37. Kelly, J. M., G. R. Parker, and W. W. McFee. 1979. Heavy metal accumulation and growth of seedlings of five forest species as influenced by soil cadmium levels. J. Environ. Qual. 8:361–364.CrossRefGoogle Scholar
  38. Kramer, P. J., and T. T. Kozlowski. 1979. Physiology of Woody Plants. Academic Press, New York, 811 pp.Google Scholar
  39. Kress, L. W., and J. M. Skelly. 1980. The interaction of O3, SO2, and NO2 and its effect on the growth of two forest tree species. (In press).Google Scholar
  40. Lamoreaux, R. J., and W. R. Chaney. 1977. Growth and water movement in silver maple seedlings affected by cadmium. J. Environ. Qual. 6:201–205.CrossRefGoogle Scholar
  41. Legge, A. H., D. R. Jaques, R. G. Amundson, and R. B. Walker. 1977. Field studies of pine, spruce and aspen periodically subjected to sulfur gas emissions. Water, Air, Soil Pollut. 8:105–129.Google Scholar
  42. Linzon, S. N. 1971. Economic effects of sulfur dioxide on forest growth. J. Air Pollut. Control Assoc. 21:81–86.Google Scholar
  43. Loucks, O. L. 1970. Evolution of diversity, efficiency and community stability. Am. Zool. 10:17–25.PubMedGoogle Scholar
  44. Lynch, D. F. 1951. Diameter growth of ponderosa pine in relation to the Spokane pine-blight problem. Northwest Sci. 25:157–163.Google Scholar
  45. Manning, W. J. 1971. Effects of limestone dust on leaf condition, foliar disease incidence and leaf surface microflora of native plants. Environ. Pollut. 2:69–76.CrossRefGoogle Scholar
  46. McClenahen, J. R. 1978. Community changes in a deciduous forest exposed to air pollution. Can. J. For. Res. 8:432–438.CrossRefGoogle Scholar
  47. Miller, P. R. 1973. Oxidant-induced community change in a mixed conifer forest. In: J. Naegle (Ed.), Air Pollution Damage to Vegetation, Adv. Chem. Series No. 122, Am. Chem. Soc., Washington, D.D., pp. 101–117.CrossRefGoogle Scholar
  48. Miller, P. R., Ed. 1977. Photochemical Oxidant Air Pollutant Effects on a Mixed Conifer Forest Ecosystem. A progress report. U.S. Environmental Protection Agency, Publica. No. EPA-600/3-77-104, Corvallis, Oregon, 338 pp.Google Scholar
  49. Mitchell, C. D., and T. A. Fretz. 1977. Cadmium and zinc toxicity in white pine, red maple and Norway spruce. J. Am. Soc. Hort. Sci. 102:81–84.Google Scholar
  50. Nash, T. H., H. C. Fritts, and M. A. Stokes. 1975. A technique for examining non-climatic variation in widths of annual tree rings with special reference to air pollution. Tree-ring Bull. 35:15–24.Google Scholar
  51. National Academy of Sciences. 1977. Ozone and Other Photochemical Oxidants. Chapter 12. Ecosystems. NAS, Washington, D.C., pp. 586–642.Google Scholar
  52. Niklfeld, H. 1970. Pflanzensoziologische Beobachtungen in Rauchschadengebiet eines Aluminiumwerkes. Zentbl. Ges. Forstw. 84:318–329.Google Scholar
  53. Nyborg, M. 1978. Sulfur pollution in soils. In: J. O. Nriagu (Ed.), Sulfur in the Environment. Part II. Ecological Impacts. Wiley, New York, pp. 359–390.Google Scholar
  54. Odum, E. D. 1969. The strategy of ecosystem development. Science 164:262–270.PubMedCrossRefGoogle Scholar
  55. Phillips, S. O., J. M. Skelly, and H. E. Burkhart. 1977a. Eastern white pine exhibits growth retardation by fluctuating air pollutant levels: Interaction of rainfall, age, and symptom expression. Phytopathology 67:721–725.CrossRefGoogle Scholar
  56. Phillips, S. O., J. M. Skelly, and H. E. Burkhart. 1977b. Growth fluctuation of loblolly pine due to periodic air pollution levels: Interaction of rainfall and age. Phytopathology 67:716–728.CrossRefGoogle Scholar
  57. Raup, H. M. 1957. Vegetational adjustment to the instability of the site. In: Proc. 6th Technical Meeting of the Internat. Union for the Protection of Nature, June 1956, Edinburgh, pp. 36–48.Google Scholar
  58. Santamour, F. S., Jr. 1969. Air Pollution Studies on Plantanus and American elm seedlings. Plant Dis. Reptr. 53:482–485.Google Scholar
  59. Scheffer, T. C., and G. C. Hedgcock. 1955. Injury to Northwestern Forest Trees by Sulfur Dioxide from Smelters. U.S.D.A. Forest Service Tech. Bull. No. 1117, Washington, D.C., 49 pp.Google Scholar
  60. Shaw, C. G., G. W. Fischer, D. F. Adams, M. F. Adams, and D. W. Lynch. 1951. Fluorine injury to ponderosa pine: A summary. Northwest Sci. 15:156.Google Scholar
  61. Skelly, J.M., L. D. Moore, and L. L. Stone. 1972. Symptom expression of eastern white pine located near a source of oxides of nitrogen and sulfur dioxide. Plant Dis. Reptr. 56:3–6.Google Scholar
  62. Sprugel, D. G., J. E. Miller, R. N. Muller, H. J. Smith, and P. B. Xerikos. 1979. Effect of SO2 fumigation on yield and seed quality in field-grown soybeans. Argonne National Laboratory Publica. No. ANL-ERC-72-22, Argonne, Illinois, 27 pp.Google Scholar
  63. Stemple, R. B., and E. H. Tryon. 1973. Effect of coal smoke and resulting fly ash on site quality and radial increment of white oak. Castanea 38:396–406.Google Scholar
  64. Stephens, E. P. 1955. Research in the biological aspects of forest production. J. For. 53:183–186.Google Scholar
  65. Stephens, E. P. 1956. The uprooting of trees: A forest process. Soil Sci. Soc. Am. Proc. 20:113–116.CrossRefGoogle Scholar
  66. Stone, L. L., and J. M. Skelly. 1974. The growth of two forest tree species adjacent to a periodic source of air pollution. Phytopathology 64:773–778.CrossRefGoogle Scholar
  67. Sundberg, R. 1971. On the estimation of pollution-caused growth reduction in forest trees. The IASPS Symposium on Statistical Aspects of Pollution Problems. Boston, Massachusetts.Google Scholar
  68. Symeonides, C. 1979. Tree-ring analysis for tracing the history of pollution. Application to a study in northern Sweden. J. Environ. Qual. 8:482–486.CrossRefGoogle Scholar
  69. Taylor, O. C. 1974. Oxidant Air Pollutant Effects on a Western Coniferous Forest Ecosystem. Annual Progress Report 1973–1974. Statewide Air Pollution Research Center, Univ. California, Riverside, 111 pp.Google Scholar
  70. Thompson, C. R. 1968. Effects of air pollutants on lemons and navel oranges. Calif. Agr. 22:2–3.Google Scholar
  71. Todd, G. W., and M. J. Garber. 1958. Some effects of air pollutants on the growth and productivity of plants. Bot. Gaz. 120:75–80.CrossRefGoogle Scholar
  72. Trautmann, W., A. Krause, and R. Wolff-Straub. 1970. Veränderungen der Bodenvegetation in Kiefernforsten als Folge industrieller Luftverunreinigungen im Raum Mannheim-Ludwigshafen. Schraftinr. Reihe Vegetationsk. 5:193–207.Google Scholar
  73. Treshow, M. 1968. The impact of air pollutants on plant populations. Phytopathology 58:1108–1113.Google Scholar
  74. Treshow, M., and D. Stewart. 1973. Ozone sensitivity of plants in natural communities. Biol. Conserva. 5:209–214.CrossRefGoogle Scholar
  75. Treshow, M., F. K. Anderson, and F. Harner. 1967. Responses of Douglas-fir to elevated atmospheric fluorides. For. Sci. 13:114–120.Google Scholar
  76. Tveite, B., and O. Teigen. 1976. Acidification experiments in conifer forest. 3. Tree growth Studies. SNSE Project, Research Report No. 7, Oslo, Norway.Google Scholar
  77. Weinstein, L. H., and D. C. McCune. 1979. Air pollution stress. In: H. Mussell and R. Staples (Eds.), Stress Physiology and Crop Plants. Wiley, New York, pp. 328–341.Google Scholar
  78. Wert, S. L., P. R. Miller, and R. N. Larsh. 1970. Color photos detect smog injury to forest trees. J. For. 68:536–539.Google Scholar
  79. Westman, W. E. 1979. Oxidant effects on Californian coastal sage scrub. Science 205:1001–1003.PubMedCrossRefGoogle Scholar
  80. Whittaker, R. H. 1975. Communities and Ecosystems. Macmillan, New York, 385 pp.Google Scholar
  81. Whittaker, R. H., R. H. Bormann, G. E. Likens, and T. G. Siccama. 1974. The Hubbard Brook Ecosystem Study: Forest biomass and production. Ecol. Mono. 44:233–252.CrossRefGoogle Scholar
  82. Wood, T., and F. H. Bormann. 1974. The effects of an artificial acid mist upon the growth of Betula alleghaniensis Britt. Environ. Pollut. 7:259–268.CrossRefGoogle Scholar
  83. Wood, T., and F. H. Bormann. 1975. Short-term effects of an artificial acid rain upon the growth and nutrient relations of Pinus strobus L. In: L. S. Dochinger and T. A. Seliga (Eds.), Proc. 1st Internat. Symp. Acid Precipitation and the Forest Ecosystem. U.S.D.A. Forest Service, Upper Darby, Pennsylvania, pp. 815–825.Google Scholar
  84. Woodwell, G. M. 1974. Success, succession and Adam Smith. BioScience 24:81–87.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations