Forest Stress: Influence of Air Pollutants on Phytophagous Forest Insects

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)


Arthropods have roles of enormous importance in the structure and function of terrestrial ecosystems. Forest ecosystems, in particular, typically have large and diverse arthropod populations. The importance of pollinating (Chapter 7) and litter metabolizing (Chapter 8) species has already been introduced. The damaging influence of high population densities of certain insects can be very visible and cause widespread forest destruction; witness contemporary North American situations involving the Douglas fir tussock moth, the gypsy moth, the eastern spruce budworm, and the southern pine bark beetle. It is critically important, however, to keep in perspective that there is substantial evidence to support the notion that forest insects, even those that cause massive destruction in the short run, may play essential and beneficial roles in forest ecosystems in the long run. These roles may involve regulation of tree species competition, species composition and succession, primary production, and nutrient cycling (Huffaker, 1974; Mattson and Addy, 1975).


Sulfur Dioxide Bark Beetle Gypsy Moth Forest Insect Average Daily Traffic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, R. F. 1970. Relation of insects and mites to the abnormal growth of Christmas trees in Mt. Storm, West Virginia-Gorman, Maryland vicinity. U.S. Environmental Protection Agency Report, Durham, North Carolina, 31 pp.Google Scholar
  2. Baker, G. M., and E. A. Wright. 1977. Effects of carbon monoxide on insects. Bull. Environ. Contam. Toxicol. 17:98–104.PubMedCrossRefGoogle Scholar
  3. Beard, R. L. 1965. Observation on house flies on high-ozone environments. Ann. Entomol. Soc. Am. 58:404–405.PubMedGoogle Scholar
  4. Boullard, B. 1973. Interactions entre les polluants atmosphériques et certains parasites des essences forestières (champignons et insects). For. Privée 94:31, 33, 35, 37.Google Scholar
  5. Boyce Thompson Institute. 1971. Annual Report of the Boyce Thompson Institute for Plant Research. Yonkers, New York, pp. 4–7.Google Scholar
  6. Caparrini, W. 1957. Fluorine poisoning in domestic animals (cattle) and bees. Zooprofilass 12:249–250.Google Scholar
  7. Carlson, C. E., and J. E. Dewey. 1971. Environmental Pollution by Fluorides in Flathead National Forest and Glacier National Park. U.S.D.A. Forest Service. Forest Insect and Disease Branch, Missoula, Montana, 57 pp.Google Scholar
  8. Carlson, C. E., W. E. Bousfield, and M. D. McGregor. 1974. The relationship of an insect infestation on lodgepole pine to fluorides emitted from a nearby aluminum plant in Montana. Report No. 74-14, U.S.D.A. Forest Service, Div. State Private For., Missoula, Montana, 21 pp.Google Scholar
  9. Charles, P. J., and C. Villemant. 1977. Modifications des niveaux de population d’insectes dans les jeunes plantations de pins sylvestres de la foret de Roumare (Seine—Maritime) soumises à la pollution atmosphérique. C. R. Acad. Agric. Fr. 63:502–510.Google Scholar
  10. Cobb, F. W., Jr., D. L. Wood, R. W. Stark, and P. R. Müler. 1968a. II. Effect of injury upon physical properties of oleoresin, moisture content, and phloem thickness. Hilgardia 39:127–134.Google Scholar
  11. Cobb, F. W., Jr., D. L. Wood, R. W. Stark, and J. R. Parmeter, Jr. 1968b. Theory on the relationship between oxidant injury and bark beetle infestation. Hilgardia 39:141–152.Google Scholar
  12. Cobb, F. W., Jr., E. Zavarin, and J. Bergot. 1972. Effect of air pollution on the volatile oil from leaves of Pinus ponderosa. Phytochemistry 11:1815–1818.CrossRefGoogle Scholar
  13. Dewey, J. E. 1973. Accumulation of fluorides by insects near an emission source in western Montana. Environ. Entomol. 2:179–180.Google Scholar
  14. Dewey, J. E., W. M. Ciesla, and H. E. Meyer. 1974. Insect defoliation as a predisposing agent to a bark beetle outbreak in eastern Montana. Environ. Entomol. 3:722.Google Scholar
  15. Gilbert, O. L. 1971. Some indirect effects of air pollution on bark-living invertebrates. J. Appl. Ecol. 8:77–84.CrossRefGoogle Scholar
  16. Giles, F. E., S. G. Middleton, and J. G. Grau. 1973. Evidence for the accumulation of atmospheric lead by insects in areas of high traffic density. Environ. Entomol. 2:299–300.Google Scholar
  17. Ginevan, M. E., and D. D. Lane. 1978. Effects of sulfur dioxide in air on the fruit fly, Drosophila melanogaster. Environ. Sci. Technol. 12:828–831.CrossRefGoogle Scholar
  18. Guilhon, J., R. Truhaut, and J. Bemuchon. 1962. Studies on the variations in fluorine levels in bees with respect to industrial atmospheric air pollution in a Pyrenean village. Acad. d’agr. de France, Compt. Rendt. 48:607–615.Google Scholar
  19. Hagvar, S., G. Abrahamsen, and A. Bokhe. 1976. Attack by the pine bud moth in southern Norway: Possible effect of acid pollution. For. Abstr. 37:694.Google Scholar
  20. Hay, C. J. 1975. Arthropod stress. In: W. H. Smith and L. S. Dochinger (Eds.), Air Pollution and Metropolitan Woody Vegetation. U.S.D.A. Forest Service, Publica. No. PIEFR-PA-1, Upper Darby, Pennsylvania, pp. 33–34.Google Scholar
  21. Hillman, C. 1972. Biological effects of air pollution on insects emphasizing the reactions of the honey bee (Apis mellifera L.) to sulfur dioxide. Ph.D. Thesis. Pennsylvania State Univ., State College, Pennsylvania, 170 pp.Google Scholar
  22. Hodges, J. D., W. W. Elam, W. F. Watson, and T. E. Nebeher. 1979. Oleoresin characteristics and susceptibility of four southern pines to southern pine beetle (Coleoptera: Scolytidae) attacks. Can. Entomol. 111:889–896.CrossRefGoogle Scholar
  23. Huffaker, C. B. 1974. Some implications of plant-arthropod and higher-level, arthropod-arthropod food links. Environ. Entomol. 3:1–9.Google Scholar
  24. Johnson, P. C. 1950. Entomological aspects of the ponderosa pine blight study, Spokane, Washington. Unpubl. Report, U.S.D.A. Bur. Entomol. and Plant Quar., Forest Insect Laboratory, Coeur d’Alene, Idaho, 15 pp.Google Scholar
  25. Johnson, P. C. 1969. Atmospheric pollution and coniferophagous invertebrates. Proc. 20th Ann. Western For. Insect Work Conf., Coeur d’Alene, Idaho.Google Scholar
  26. Keen, F. P., and J. C. Evenden. 1929. The role of forest insects in respect to timber damage and smelter fume area near Northport, Washington. Unpubl. Report, U.S.D.A. Bur. Entomol., Stanford Univ., Stanford, California, 12 pp.Google Scholar
  27. Lebrun, P. 1976. Effects écologiques de la pollution atmosphérique sur les populations et communautés de microarthropodes corticoles (Acariens, Collemboles et Ptérygotes). Bull. Soc. Ecol. 7:417–430.Google Scholar
  28. Levy, R., Y. J. Chiu, and H. L. Cromroy. 1972. Effects of ozone on three species of Diptera. Environ. Entomol. 1:608–611.Google Scholar
  29. Levy, R., D. P. Jouvenaz, and H. L. Cromroy. 1974. Tolerance of three species of insects to prolonged exposures to ozone. Environ. Entomol. 3:184–185.Google Scholar
  30. Lezovic, J. 1969. The influence of fluorine compounds on the biological life near an aluminum factory. Fluoride Quart. Re. 2:1.Google Scholar
  31. Linzon, S. N. 1966. Damage to eastern white pine by sulfur dioxide, semimaturetissue needle blight, and ozone. J. Air Pollut. Control Assoc. 16:140–144.Google Scholar
  32. Mankovska, B. 1975. Influence of fluorine emissions from an aluminum factory plant on the content in different developmental stages of European pine shoot moth, Rhyacionia buoliana Schiff. Biologia (Bratislava) 30:355.Google Scholar
  33. Marier, J. R. 1968. Fluoride research. Science 159:1494–1495.PubMedCrossRefGoogle Scholar
  34. Mattson, W. J., and N. D. Addy. 1975. Phytophagous insects as regulators of forest primary production. Science 190:515–522.Google Scholar
  35. Maurizio, A., and M. Staub. 1956. Poisoning of bees with industrial gases containing fluorine in Switzerland. Schweiz. Bienen Ztg. 79:476–486.Google Scholar
  36. McClenahen, J. R., and T. C. Weidensaul. 1977. Geographic Distribution of Airborne Fluorides Near a Point Source in Southeast Ohio. Ohio Agricultural Research and Development Center, Res. Bull. No. 1093, Wooster, Ohio, 29 pp.Google Scholar
  37. Miller, P. R., and M. J. Elderman (Eds.). 1977. Photochemical Oxidant Air Pollutant Effects on a Mixed Conifer Forest Ecosystem. EPA-600/3-77-104. Environmental Protection Agency, Corvallis, Oregon, 338 pp.Google Scholar
  38. Miller, P. R., F. W. Cobb, Jr., and E. Zavarin. 1968. III. Effect of injury upon oleoresin composition, phloem carbohydrates, and phloem pH. Hilgardia 39:135–140.Google Scholar
  39. Novakova, E. 1969. Influence des pollutions industrielles sur les communautes animals et l’utilisation des animaux comme bioindicateurs. Proc. 1st Eur. Congr. Influence of Air Pollution on Plants and Animais, Wageningen, 1968, pp. 41–48.Google Scholar
  40. Outram, I. 1970. Some effects of fumigant sulphryl fluoride on the gross metabolism of insect eggs. Fluoride Quart. Rep. 3:2.Google Scholar
  41. Price, P. W., B. J. Rathcke, and D. A. Gentry. 1974. Lead in terrestrial arthropods: Evidence for biological concentration. Environ. Entomol. 3:370–372.Google Scholar
  42. Przybylski, Z. 1979. The effects of automobile exhaust gases on the arthropods of cultivated plants, meadows and orchards. Environ. Pollut. 19:157–161.CrossRefGoogle Scholar
  43. Rudinsky, J. A. 1962. Ecology of Scolytidae. Annu. Rev. Entomol. 7:327–348.CrossRefGoogle Scholar
  44. Saunders, J. L. 1972. Disease and insect pests of Christmas trees. School for Christmas Tree Growers. College of Agriculture, Proc. Cornell Univ., Ithaca, New York, pp. 88–90.Google Scholar
  45. Schnaider, Z., and Z. Sierpinski. 1967. Dangerous condition for some forest tree species from insects in the industrial region of Silesia. Prace Instytut Badawczy Tesnictwa (Warsaw) No. 316, pp. 113–150.Google Scholar
  46. Sierpinski, Z. 1967. Influence of industrial air pollutants on the population dynamics of some primary pine pests. Proc. 14th Congr. Int. Union For. Res. Organiz. 5(24):518–531.Google Scholar
  47. Sierpinski, Z. 1970. Economic significance of noxious insects in pine stands under the chronic impact of the industrial air pollution. Sylwan 114:59–71.Google Scholar
  48. Sierpinski, Z. 1971. Secondary noxious insects of pine in stands growing in areas with industrial air pollution containing nitrogen compounds. Sylwan 115: 11–18.Google Scholar
  49. Sierpinski, Z. 1972a. The economic importance of secondary noxious insects of pine on territories with chronic influence of industrial air pollution. Mitt. Forstl. Bundesversuchsanst Wien 97:609–615.Google Scholar
  50. Sierpinski, Z. 1972b. The occurrence of the spruce spider (Paratetranychus (Oligonychus) ununquis Jacoby) on Scotch pine in the range of the influence of industrial air pollution. In: Institute Badawczego Lesnictwa, Warsaw, Bull. No. 433–434, pp. 101–110.Google Scholar
  51. Sierpinski, Z., and J. Chlodny. 1977. Entomofauna of forest plantations in the zone of disastrous industrial pollution. In: J. Woldk (Ed.), Relationship Between Increase in Air Pollution Toxicity and Elevation Above Ground. Institute Badawczego Lesnictwa, Warsaw, pp. 81–150.Google Scholar
  52. Stark, R. W., and F. W. Cobb, Jr. 1969. Smog injury, root diseases and bark beetle damage in ponderosa pine. Califor. Agric., Sept., 1969:13–15.Google Scholar
  53. Stark, R. W., P. R. Müler, F. W. Cobb, Jr., D. L. Wood, and J. R. Parmeter, Jr. 1968. I. Incidence of bark beetle infestation in injured trees. Hilgardia 39: 121–126.Google Scholar
  54. Struble, G. R., and P. C. Johnson, 1964. Black pine leaf scale. U.S.D.A. Forest Serv., Forest Pest Leaflet No. 91, Washington, D.C., 6 pp.Google Scholar
  55. Templin, E. 1962. On the population dynamics of several pine pests in smoke- damaged forest stands. Wissenschafthche Zeitschrift der Technischen Universität, Dresden 113:631–637.Google Scholar
  56. Villemant, C. 1979. Modifications de l’enlomocenose due pin sylvestre en liaison avec la pollution atmosphérique en foret de Roumare (Seine-Maritime). Doctoral Dissertation. Pierre and Marie Curie University, Paris, 161 pp.Google Scholar
  57. Weisman, L., and L. Svatarakova. 1974. Toxicity of sodium fluoride on some species of harmful insects. Biologia (Bratislava) 29:847–852.Google Scholar
  58. Wiackowski, S. K., and L. S. Dochinger. 1973. Interactions between air pollution and insect pests in Poland. 2nd Inter. Congr. Plant Pathol., Univ. of Minnesota, Minneapolis, Minnesota. Abstr. No. 0736, p. 1.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations