Forest Metabolism: Influence of Air Contaminants on Photosynthesis and Respiration

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)


Photosynthesis is the most important metabolic process of forest ecosystems. In simple outline the process amounts to the reduction of carbon dioxide to CH2O and the oxidation of water to molecular oxygen and results in the derivation of approximately 95% of the dry weight of plants. Photosynthesis is the process primarily responsible for forest productivity.


Sugar Nickel Dioxide Corn Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M. C. 1973. Solar radiation and carbon dioxide in plant communities —conclusions. In: J. P. Cooper (Ed.), Photosynthesis and Productivity in Different Environments. Cambridge Univ. Press, New York, pp. 245–354.Google Scholar
  2. Arndt, V. 1974. The Kaulsky-effect: A method for the investigation of the actions of air pollutants in chloroplasts. Environ. Pollut. 6:181–194.CrossRefGoogle Scholar
  3. Ashenden, T. W. 1979. Effects of SO2 and NO2 pollution on transpiration in Phaseolus vulgaris. Environ. Pollut. 18:45–50.CrossRefGoogle Scholar
  4. Auclair, D. 1976. Effects of dust on photosynthesis. I. Effects of cement and coal dust on photosynthesis of spruce. Ann. Sci. For. 33:247–255.CrossRefGoogle Scholar
  5. Auclair, D. 1977. Effects of dust on photosynthesis. II. Effects of particulate matter on photosynthesis of Scots pine and poplar. Ann. Sci. For. 34:47–57.CrossRefGoogle Scholar
  6. Barnes, R. L. 1972. Effects of chronic exposure to ozone on photosynthesis and respiration of pines. Environ. Pollut. 3:133–138.CrossRefGoogle Scholar
  7. Bauer, H., W. Larcher, and R. B. Walker. 1973. Influence of temperature stress on CO2-gas exchange. In: J. D. Cooper (Ed.), Photosynthesis and Productivity in Different Environments. Cambridge Univ. Press, New York, pp. 557–586.Google Scholar
  8. Bazzaz, F. A., R. W. Carlson, and G. L. Rolfe. 1974a. The effect of heavy metals on plants: Part 1. Inhibition of gas exchange in sunflower by Pb, Cd, Ni and Tl. Environ. Pollut. 7:241–246.CrossRefGoogle Scholar
  9. Bazzaz, F. A., G. L. Rolfe, and R. W. Carlson. 1974b. Effect of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol. Plant. 34:373–376.CrossRefGoogle Scholar
  10. Blackman, G. E., and J. N. Black. 1959. Physiological and ecological studies in the analysis of plant environment. XII. The role of the light factor in limiting growth. Ann. Bot. N. S. 23:131–145.Google Scholar
  11. Blackman, G. E., and G. L. Wilson. 1951. Physiological and ecological studies in the analysis of plant environment. VI. The constancy for different species of a logarithmic relationship between the net assimilation rate and light intensity and its ecological significance. Ann. Bot. N. S. 15:63–94.Google Scholar
  12. Bosian, G. 1965. The controlled climate in the plant chamber and its influence upon assimilation and transpiration. In: Methodology of Plant Ecophysiology. Proc. Montpellier Symp., UNESCO, New York, pp. 225–232.Google Scholar
  13. Botkin, D. B. 1968. Observed and predicted rates of carbon dioxide uptake for oak leaves in a coastal plain forest. Ph.D. Thesis. Rutgers Univ., New Brunswick, New Jersey, 171 pp.Google Scholar
  14. Botkin, D. B., W. H. Smith, R. W. Carlson. 1971. Ozone suppression of white pine net photosynthesis. J. Air Pollut. Control Assoc. 21:778–780.Google Scholar
  15. Botkin, D. B., W. H. Smith, R. W. Carlson, and T. L. Smith. 1972. Effects of ozone on white pine saplings: Variation in inhibition and recovery of net photosynthesis. Environ. Pollut. 3:273–289.CrossRefGoogle Scholar
  16. Bourdeau, P. F. 1963. Photosynthesis and respiration of Pinus strobus seedlings in relation to provenance and treatment. Ecology 44:710–716.CrossRefGoogle Scholar
  17. Carlson, R. W. 1979. Reduction in the photosynthetic rate of Acer, Quercus and Fraxinus species caused by sulphur dioxide and ozone. Environ. Pollut. 18: 159–170.CrossRefGoogle Scholar
  18. Carlson, R. W., and F. A. Bazzaz. 1977. Growth reduction in American sycamore (Plantanus occidentalis L.) caused by Pb-Cd interaction. Environ. Pollut. 12: 243–253.CrossRefGoogle Scholar
  19. Carlson, R. W., F. A. Bazzaz, and G. L. Rolfe. 1975. The effect of heavy metals on plants. II. Net photosynthesis and transpiration of whole corn and sunflower plants treated with Pb, Cd, Ni and Tl. Environ. Res. 10:113–120.PubMedCrossRefGoogle Scholar
  20. Coyne, P. I., and G. E. Bingham. 1978. Photosynthesis and stomatal light responses in snap beans exposed to hydrogen sulfide and ozone. J. Air Pollut. Control Assoc. 28:1119–1123.Google Scholar
  21. De Koning, H. W., and Z. Jegier. 1968. A study of the effects of ozone and sulfur dioxide on the photosynthesis and respiration of Euglena gracilis. Atmos. Environ. 2:321–326.CrossRefGoogle Scholar
  22. Erickson, L. C., and R. T. Wedding. 1956. Effects of ozonated hexene on photosynthesis and respiration of Lemma minor. Am. J. Bot. 43:32–36.CrossRefGoogle Scholar
  23. Evans, L. S., and I. P. Ting. 1974. Ozone sensitivity of leaves: Relationship to leaf water content, gas transfer resistance, and anatomical characteristics. Am. J. Bot. 61:592–597.CrossRefGoogle Scholar
  24. Flückiger, W., H. Flückiger-Keller, and J. J. Oertli. 1978. Biochemische Veränderungen in jungen Birken im Nahbereich einer Autobahn. Eur. J. For. Pathol. 8:154–163.CrossRefGoogle Scholar
  25. Fritts, H. C. 1966. Growth-rings of trees: Their correlation with climate. Science 154:973–979.PubMedCrossRefGoogle Scholar
  26. Govindjee. 1975. Bioenergetics of Photosynthesis. Academic Press, New York, 678 pp.Google Scholar
  27. Hällgren, J. E. 1978. Physiological and biochemical effects of sulfur dioxide on plants. In: J. E. Nriagu (Ed.), Sulfur in the Environment. Part II. Ecological Impacts. Wiley, New York, pp. 163–209.Google Scholar
  28. Heinicke, D. R., and J. W. Foott. 1966. The effect of several phosphate insecticides on photosynthesis of red delicious apple leaves. Can. J. Plant Sci. 46: 589–591.CrossRefGoogle Scholar
  29. Helms, J. A. 1965. Diurnal and seasonal patterns of net assimilation in Douglasfir, Pseudotsuga menziesii (Mirb.) Franco, as influenced by environment. Ecology 46:698–708.CrossRefGoogle Scholar
  30. Hesketh, J. D., and D. N. Moss. 1963. Variation in the response of photosynthesis to light. Crop Sci. 3:107–110.CrossRefGoogle Scholar
  31. Hill, A. C., and J. H. Bennett. 1970. Inhibition of apparent photosynthesis by nitrogen oxides. Atmos. Environ. 4:341–348.CrossRefGoogle Scholar
  32. Hill, A. C., and N. Littlefield. 1969. Ozone. Effect on apparent photosynthesis, rate of transpiration, and stomatal closure in plants. Environ. Sci. Technol. 3:52–56.CrossRefGoogle Scholar
  33. Hodges, J. D. 1962. Photosynthetic efficiency and patterns of photosynthesis of seven different conifers under different natural environmental conditions. M. F. Thesis, Univ. Washington, Seattle, Washington, 99 pp.Google Scholar
  34. Höll, W., and R. Hampp. 1975. Lead and plants. Residue Rev. 54:79–111.PubMedGoogle Scholar
  35. Huber, B., and H. Polster. 1955. Zur Frage der physiologischen Ursachen der unterschiedlichen Stofferzeugung von Pappelklonen. Bio. Zentralbl. 74: 370–420.Google Scholar
  36. Jensen, K. F., and T. T. Kozlowski. 1974. Effect of SO2 on photosynthesis of quaking aspen and white oak seedlings. North Amer. For. Biol. Workshop Proc. 3:359.Google Scholar
  37. Keller, T. 1968. The influence of mineral nutrition on gaseous exchange by forest trees. In: Phosphorus in Agriculture. Inter. Superphosphate Manufact. Assoc., Ltd., Agricul. Comm. Bull. No. 50, June 1968, Paris, pp. 1–11.Google Scholar
  38. Keller, T. 1970. Gaseous exchange—A good indicator of nutritional status and fertilizer response of forest trees. Proc. 6th Internat. Colloq. Plant Analysis and Fertilizer Problems. ISHS, Tel Aviv, pp. 669–678.Google Scholar
  39. Keller, T. 1973. On the phytotoxicity of dust-like fluoride compounds. Staub Reinhai. Luft 33:379–381.Google Scholar
  40. Keller, T. 1977a. Definition and importance of latent injury by air pollution. Allg. Forst-u. Jagdztg. 148:115–120.CrossRefGoogle Scholar
  41. Keller, T. 1977b. The effect of long term low SO2 concentrations upon photosynthesis of conifers. 4th Internat. Clean Air Congress, pp. 81–83.Google Scholar
  42. Keller, T. 1977c. The influence of air pollution by fluorides on photosynthesis of forest tree species. In: W. Bosshard (Ed.). Mitt. Schweiz. Anst. forstl. Ver’wes 53:163–198.Google Scholar
  43. Keller, T. 1978a. Influence of low SO2 concentrations upon CO2 uptake of fir and spruce. Photosynthetica 12:316–322.Google Scholar
  44. Keller, T. 1978b. The influence of SO2 treatment at different seasons on the spruce trees intake of CO2 and its yearly growth pattern. Schweizer. Zeitsch. Forstwesen 129:381–393.Google Scholar
  45. Keller, T. 1979. The influence of SO2 gasing on the growth of spruce tree roots. Schweizer. Zeitsch. Forstwesen 130:429–435.Google Scholar
  46. Keller, T., and H. Schwager. 1977. Air pollution and ascorbic acid. Eur. J. For. Pathol. 7:338–350.CrossRefGoogle Scholar
  47. Kozlowski, T. T., and T. Keller. 1966. Food relations of woody plants. Bot. Rev. 32:293–382.CrossRefGoogle Scholar
  48. Kramer, P. A., and T. T. Kozlowski. 1960. Physiology of Trees. McGraw-Hill, New York, 642 pp.Google Scholar
  49. Kramer, P. J., and J. P. Decker. 1944. Relation between light intensity and rate of photosynthesis of loblolly pine and certain hardwoods. Plant Physiol. 19: 350–358.PubMedCrossRefGoogle Scholar
  50. Kramer, P. J., and T. T. Kozlowski. 1979. Physiology of Woody Plants. Academic Press, New York, 811 pp.Google Scholar
  51. Krueger, K. W., and W. K. Ferrell. 1965. Comparative photosynthetic and respiratory responses to temperature and light by Pseudotsuga menziesii var. menziesii and var. glauca seedlings. Ecology 46:797–801.CrossRefGoogle Scholar
  52. Lamoreaux, R. J., and W. R. Chaney. 1978. Photosynthesis and transpiration of excised silver maple leaves exposed to cadmium and sulphur dioxide. Environ. Pollut. 17:259–268.CrossRefGoogle Scholar
  53. Legge, A. H., and D. R. Jaques. 1977. Field studies of pine, spruce and aspen periodically subjected to sulfur gas emissions. Water, Soil, Air Pollut. 8:105–129.Google Scholar
  54. Linder, S., and E. Troeng. 1977. The seasonal course of net photosynthesis and stem respiration in a 20-year-old stand of Scots pine (Pinus silvestris L.) V. K. Sci. Comm., 4th Internat. Congr. Photosynthesis, London, p. 221.Google Scholar
  55. Macdowall, F. D. H. 1965. Stages of ozone damage to respiration of tobacco leaves. Can. J. Bot. 43:419–427.CrossRefGoogle Scholar
  56. McCune, D. C., and L. H. Weinstein. 1971. Metabolic effects of atmospheric fluorides on plants. Environ. Pollut. 1:169–174.CrossRefGoogle Scholar
  57. McLean, F. T. 1920. Field studies of the carbon dioxide absorption of coconut leaves. Ann. Bot. 34:367–389.Google Scholar
  58. Miller, P. R. 1966. The relationship of ozone to suppression of photosynthesis and to the cause of chlorotic decline of ponderosa pine. Diss. Abstr. 26:3574–3575.Google Scholar
  59. Miller, P. R., J. R. Parmeter, Jr., B. H. Flick, and C. W. Martinez. 1969. Ozone dosage response of ponderosa pine seedlings. J. Air Pollut. Control Associ. 19:435–438.Google Scholar
  60. Muller, R. N., J. E. Miller, and D. G. Sprugel. 1978. Photosynthetic response of field-grown soybeans to fumigations with sulfur dioxide. Argonne National Laboratory, Environ. Res. Contr. No. 78-18. Argonne, Illinois, 21 pp.Google Scholar
  61. Nátr, L. 1973. Influence of mineral nutrition on photosynthesis and the use of assimilates. In: J. P. Cooper (Ed.), Photosynthesis and Productivity in Different Environments. Cambridge Univ. Press, New York, pp. 537–555.Google Scholar
  62. Nazirov, N. N. 1966. Deistvie ioniziruy-uschei radiatsu na fatozintez u razlichnykk po radioustoichivasti sortov khlopchatnika. Uzbeksku Biol. Zh. 10: 3–8.Google Scholar
  63. Nellen, V. R. 1966. Über den Einfluss des Salzgehaltes auf die photosynthetische Leistung verschiedener Standardformen von Delesseria sanguinea und Fucus serratus. Helgoländer Wiss. Meeresunters 13:288–313.CrossRefGoogle Scholar
  64. Pharis, R. P., and F. W. Woods. 1960. Effects of temperature upon photosynthesis and respiration of Choctawatchee sand pine. Ecology 41:191–199.CrossRefGoogle Scholar
  65. Pisek, A., and W. Tranquillini. 1954. Assimilation und Kohlenstoffhaushalt in der Krone von Fichten (Picea excelsa Link) und Rotbuchenbäumen (Fagus silvatica L.) Flora (Jena) 141:237–270.Google Scholar
  66. Pisek, A., and E. Winkler. 1958. Assimilationsvermögen und Respiration der Fichte (Picea excelsa Link) in verschiedener Höhenlage und der Zirbe (Pinus cembra L.) der alpinen Waldgrenze. Planta 51:518–543.CrossRefGoogle Scholar
  67. Polster, H. 1950. Die physiologischen Grundlagen der Stofferzeugung im Walde. Untersuchungen über Assimilation, Respiration und Transpiration unserer Hauptholzarten. Bayrischer Landwirtschaftsverlag, G.m.b.H. München, 96 pp.Google Scholar
  68. Polster, H., and G. Weise. 1962. Vergleichende Assimilation-suntersuchungen an Klonen verschiedener Lärchenherkünfte (Larix decidua and Larix leptolepis) unter Freiland und Klimaraumbedingungen. Zuchter 32:103–110.Google Scholar
  69. Roberts, B. R., A. M. Townsend, and L. S. Dochinger. 1971. Photosynthetic response to SO2 fumigation in red maple. Plant Physiol. 47:30.Google Scholar
  70. Sasaki, S., and T. T. Kozlowski. 1966a. Variable photosynthetic responses of Pinus resinosa seedlings to herbicides. Nature 209:1042–1043.Google Scholar
  71. Sasaki, S., and T. T. Kozlowski. 1966b. Effects of herbicides on carbon dioxide uptake by pine seedlings. Can. J. Bot. 45:961–971.CrossRefGoogle Scholar
  72. Sij, J. W., and C. A. Swanson. 1974. Short-term kinetic studies on the inhibition of photosynthesis by sulfur dioxide. J. Environ. Qual. 3:103–107.CrossRefGoogle Scholar
  73. Slavik, B. 1973. Water stress, photosynthesis and the use of photosynthates. In: J. P. Cooper (Ed.), Photosynthesis and Productivity in Different Environments. Cambridge Univ. Press, New York, pp. 511–536.Google Scholar
  74. Stocker, O. 1960. Die photosynthetischen Leistungen der Steppen und Wüstenpflanzen. In: W. Ruhland (Ed.), Handbuch der Pflanzenphysiologie 5:460–491.Google Scholar
  75. Strain, B. R., and V. C. Chase. 1966. Effect of past and prevailing temperatures on the carbon dioxide exchange capacities of some woody desert perennials. Ecology 47:1043–1045.CrossRefGoogle Scholar
  76. Taylor, O. C., W. M. Dugger, Jr., M. D. Thomas, and C. R. Thompson. 1961. Effect of atmospheric oxidants on apparent photosynthesis in citrus trees. Plant Physiol. (Suppl.) 36:xxvi.CrossRefGoogle Scholar
  77. Thomas, M. D., and G. R. Hill. 1937. Relation of sulphur dioxide in the atmosphere to photosynthesis and respiration of alfalfa. Plant Physiol. 12:309–383.PubMedCrossRefGoogle Scholar
  78. Thomas, M. D., and G. R. Hill. 1949. Photosynthesis under field conditions. In: J. Frank and W. F. Loomis (Ed.), Photosynthesis in Plants. Iowa State Univ. Press, Ames, Iowa, pp. 19–52.Google Scholar
  79. Todd, G. W. 1958. Effect of ozone and ozonated 1-hexene on respiration and photosynthesis of leaves. Plant Physiol. 33:416–420.PubMedCrossRefGoogle Scholar
  80. Todd, G. W., and B. Propst. 1963. Changes in transpiration and photosynthetic rates of various leaves during treatment with ozonated hexene. Physiol. Plant. 16:57–65.CrossRefGoogle Scholar
  81. Verkroost, M. 1974. The effect of ozone on photosynthesis and respiration of Scendesmus obtusiusculus Chod., with a general discussion of effects of air pollutants in plants. Mededelingen Landbouwhogeshool Wageningen 19:1–78.Google Scholar
  82. Waugh, J. G. 1939. Some investigations on the assimilation of apple leaves. Plant Physiol. 14:436–477.CrossRefGoogle Scholar
  83. White, K. L., A. C. Hill, and J. H. Bennett. 1974. Synergistic inhibition of apparent photosynthetic rate of alfalfa by combinations of sulfur dioxide and nitrogen dioxide. Environ. Sci. Technol. 8:575–576.CrossRefGoogle Scholar
  84. Woodwell, G. M., and D. B. Botkin. 1970. Metabolism of terrestrial ecosystems by gas exchange techniques: The Brookhaven approach. In: D. E. Reichle (Ed.), Analysis of Temperate Forest Ecosystems. Springer-Verlag, New York, pp. 73–85.Google Scholar
  85. Woodwell, G. M., and R. H. Whittaker. 1968. Primary production in terrestrial ecosystems. Amer. Zoolog. 8:19–30.Google Scholar
  86. Zelitch, I. 1975. Environmental and biological control of photosynthesis: General assessment. In: R. Marcelle (Ed.), Environmental and Biological Control of Photosynthesis. Dr. W. Junk, The Hague, pp. 251–262.CrossRefGoogle Scholar
  87. Ziegler, I. 1975. The effect of SO2 pollution on plant metabolism. Residue Rev. 56:79–105.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations