Advertisement

Forest Nutrient Cycling: Influence of Air Pollutants on Symbiotic Microorganisms

  • William H. Smith
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Symbiotic microorganisms have roles of very great importance in nutrient relations in forest ecosystems. Forests frequently flourish in regions of low, marginal, or poor soil nutrient status. In addition to nutrient conservation and tight control over nutrient cycling, trees have evolved critically significant symbiotic relationships with soil fungi and bacteria that enhance nutrient supply and uptake. The interaction between air contaminants, symbiotic microbes, and their relationship with host trees is of critical importance. Adverse impact on mycorrhizae by air pollution has been hypothesized (Sobotka, 1968).

Keywords

Zinc Nickel Cadmium Manganese Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausmus, B. S., G. J. Dodson, and D. R. Jackson. 1978. Behavior of heavy metals in forest microcosms. III. Effects of litter-soil carbon metabolism. Water, Air, Soil Pollut. 10:19–26.CrossRefGoogle Scholar
  2. Becking, J. H. 1974. Frankiaceae Becking. In: R. E. Buchanan and N. E. Gibbons (Eds.), Bergey’s Manual of Determinative Bacteriology. Williams and Wilkens, Baltimore, Maryland, p. 701.Google Scholar
  3. Bowen, G. D. 1973. Mineral nutrition in ectomycorrhizae. In: G. C. Marks and T. T. Kozlowski (Eds.), Ectomycorrhizae. Their Ecology and Physiology. Academic Press, New York, pp. 151–205.Google Scholar
  4. Bowen, G. D., and C. Theodorou. 1973. Growth of ectomycorrhizal fungi around seeds and roots. In: G. C. Marks and T. T. Kozlowski (Eds.), Ectomycorrhizae. Their Ecology and Physiology. Academic Press, New York, pp. 107–150.Google Scholar
  5. Bowen, G. D., M. F. Skinner, and D. I. Bevege. 1974. Zinc uptake by mycorrhizal and uninfected roots of Pinus radiata and Araucaria cunninghamii. Soil Biol. Biochem. 6:141–144.CrossRefGoogle Scholar
  6. Cromack, K., R. L. Todd, and C. D. Monk. 1975. Patterns of Basidiomycete nutrient accumulation in conifer and deciduous forest litter. Soil Biol. Biochem. 7:265–268.CrossRefGoogle Scholar
  7. Demison, R., B. Caldwell, B. Bormann, L. Eidred, C. Swanberg, and S. Anderson. 1976. The effects of acid rain on nitrogen fixation in western Washington coniferous forests. In: L. S. Dochinger and T. A. Seliga (Eds.), Proc. 1st Internat. Symp. Acid Precipitation and the Forest Ecosystem. U.S.D.A. Forest Service, Gen. Tech. Rep. No. NE-23, Upper Darby, Pennsylvania, pp. 933–949.Google Scholar
  8. Döbereiner, J. 1966. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L.) in acid soils. Plant Soil 24:153–166.CrossRefGoogle Scholar
  9. Göbi, F., and B. Pümpel. 1973. Einfluss von “Grünkupfer Linz” auf Pflanzenausbildung, Mykorrhizabesatz sowie Frostharte von Zirbenjungpflanzen. Eur. J. For. Pathol. 3:242–245.CrossRefGoogle Scholar
  10. Hacskaylo, E. (ed.). 1971. Mycorrhizae. U.S.D.A. Forest Service, Misc. Publ. No. 1189, Washington, D.C., 255 pp.Google Scholar
  11. Haines, B., and G. R. Best. 1976. The influence of an endomycorrhizal symbiosis on nitrogen movement through soil columns under regimes of artificial throughfall and artificial acid rain. In: L. S. Dochinger and T. A. Seliga (Eds.), Proc. 1st Internat. Symp. Acid Precipitation and the Forest Ecosystem. U.S. D.A. Forest Service, Gen. Tech. Rep. No. NE-23, Upper Darby, Pennsylvania, pp. 951–961.Google Scholar
  12. Hällgren, J. E., and K. Huss. 1975. Effects of SO2 on photosynthesis and nitrogen fixation. Physiol. Plant 34:171–176.CrossRefGoogle Scholar
  13. Harley, J. L. 1969. The Biology of Mycorrhiza. Leonard Hill, London, 334 pp.Google Scholar
  14. Harvey, A. E., M. J. Larsen, and M. F. Jurgensen. 1976. Distribution of ectomycorrhizae in a mature Douglas-fir/larch forest soil in western Montana. For. Sci. 22:393–398.Google Scholar
  15. Huang, C., F. A. Bazzaz, and L. N. Vanderhoef. 1974. The inhibition of soybean metabolism by cadmium and lead. Plant Physiol. 54:122–124.PubMedCrossRefGoogle Scholar
  16. Letchworth, M. B., and V. Blum. 1977. Effects of acute ozone exposure on growth, nodulation and nitrogen content of ladino clover. Environ. Pollut. 14:303–312.CrossRefGoogle Scholar
  17. Lobanow, N. W. 1960. Mykotrophie der Holzpflanzen. Springer Verlag, Berlin, 352 pp.Google Scholar
  18. Marks, G. C., and T. T. Kozlowski (eds.). 1973. Ectomycorrhizae. Their Ecology and Physiology. Academic Press, New York, 444 pp.Google Scholar
  19. McIlveen, W. D., R. A. Spotts, and D. D. Davis. 1975. The influence of soil zinc on nodulation, mycorrhizae, and ozone-sensitivity of Pinto bean. Phytopathology 65:645–647.CrossRefGoogle Scholar
  20. Meyer, F. H. 1973. Distribution of ectomycorrhizae in native and man-made forests. In: G. C. Marks and T. T. Kozlowski (Eds.), Ectomycorrhizae. Their Ecology and Physiology. Academic Press, New York, pp. 79–105.Google Scholar
  21. Postgate, J. R., and S. Hill. 1979. Nitrogen fixation. In: J. M. Lynch and N. J. Poole (Eds.), Microbial Ecology: A Conceptual Approach. Wiley, New York, pp. 191–123.Google Scholar
  22. Ruehle, J. L., and D. H. Marx. 1979. Fiber, food, fuel, and fungal symbionts. Science 206:419–422.PubMedCrossRefGoogle Scholar
  23. Sanders, F. E., B. Mosse, and P. B. Tinker. 1975. Endomycorrhizas. Academic Press, New York, 626 pp.Google Scholar
  24. Sheridan, R. P. 1979. Effects of airborne particulates on nitrogen fixation in legumes and algae. Phytopathology 69:1011–1018.CrossRefGoogle Scholar
  25. Sobotka, A. 1968. Wurzeln von Picea excelsa L. unter dem Einfluss der Industrieexhalate im Gebiet des Erzgebirges in der CSSR. Immissionen und Waldzönosen. Cesk. Akad. Ved. Ustav pro Tvorlu a Ochr. Kran., Praha, p. 45.Google Scholar
  26. Tamm, C. F. 1976. Acid precipitation—biological effects on soil and on forest vegetation. Ambio 5:235–238.Google Scholar
  27. Tarrant, R. F. 1968. Some effects of alder on the forest environment. In: J. M. Trappe, J. F. Franklin, R. F. Tarrant, and G. M. Hansen (Eds.), Biology of Alder. U.S.D.A. Forest Service, Pac. Northwest Forest Range Exp. Sta., Portland, Oregon, pp. 193.Google Scholar
  28. Trappe, J. M. 1977. Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu. Rev. Phytopathol. 15:203–222.CrossRefGoogle Scholar
  29. Trappe, J. M., and R. D. Fogel. 1977. Ecosystematic functions of mycorrhizae. In: The Belowground Ecosystem: A Synthesis of Plant-Associated Processes. Range Sci. Dept. Science Ser. No. 26, Colorado State Univ., Fort Collins, Colorado, pp. 205–214.Google Scholar
  30. Vesper, S. J., and T. C. Weidensaul. 1978. Effects of cadmium, nickel, copper, and zinc on nitrogen fixation by soybeans. Water, Air, Soil Pollut. 9:413–422.Google Scholar
  31. Waksman, S. A. 1967. The Actinomycetes. A Summary of Current Knowledge. Ronald Press, New York, 280 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • William H. Smith
    • 1
  1. 1.Greeley Memorial LaboratorySchool of Forestry and Environmental Studies Yale UniversityNew HavenUSA

Personalised recommendations