Skip to main content

Scanning Tunneling Microscopy and Its Derivatives

  • Chapter
  • 220 Accesses

Abstract

The scanning tunneling microscope (STM) was first developed to examine the surface of solids. The properties of the surface of a solid sample are distinctly different from those within the solid, because the atoms on the surface are often arranged much differently from those in the interior of a sample. In the interior of a solid, atoms are surrounded by other atoms, whereas those on the surface interact only with those directly below them or adjacent to them, while being free to react with atoms above the surface of the solid (gases, etc.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amrein, M., Stasiak, A., Gross, H., Stoll, E., and Travaglini, G. 1988. Scanning tunneling microscopy of recA-DNA complexes coated with a conducting film. Science 240:514.

    Article  PubMed  CAS  Google Scholar 

  • Amrein, M., Durr, R., Stasiak, A., Gross, H., and Travaglini, G. 1989. Scanning tunneling microscopy of uncoated recA-DNA complexes. Science 243:1708.

    Article  PubMed  CAS  Google Scholar 

  • Arscott, P.G. 1990. Taking the measure of the molecule by scanning tunnelling microscopy. Am. Soc. Microbiol. News 56:136–138.

    Google Scholar 

  • Beebe, T.P., Jr., Wilson, T.E., Ogletree, D.F., Katz, J.E., Balhorn, R., Salmeron, M.B., and Stiekhaus, W.J. 1989. Direct observation of native DNA structures with the scanning tunneling microscope. Science 243:370.

    Article  PubMed  CAS  Google Scholar 

  • Behm, R.J., Garcia, N., and Rohrer, H. (eds.). 1990. NATO Advanced Study Institute on basic concepts and applications of scanning tunneling microscopy. Kluwer, Boston.

    Google Scholar 

  • Binnig, G., and Rohrer, H. 1985. The scanning tunneling microscope. Scient. Amer. 253:50.

    Article  Google Scholar 

  • Hoh, J.H., Lai, R., John, S.A., Revel, J.-P., and Arnsdorf, M.F. 1991. Atomic force microscopy and dissection of gap junctions. Science 253:1405.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, S.M., Thundat, T., Nagahara, L., Knipping, U., and Rill, R.L. 1989. Images of the DNA double helix in water. Science 244:1063.

    Article  PubMed  CAS  Google Scholar 

  • Pool, R. 1990. The children of the STM. Science 247: 634.

    Article  PubMed  CAS  Google Scholar 

  • Yao, J.E., He, J., Shang, G.Y., Kuang, Y.L., Wei, J., Zeng, K., Lin, K.C., Dai, J.W., and Su, Y.X. 1991. Scanning tunneling microscope and its biological applications. In: International symposium on electron microscopy, K. Kuo, and J. Yao (eds.), World Scientific, Singapore, pp. 81–95.

    Google Scholar 

  • Zasadzinski, J.A.N., Schneir, J., Gurley, J., Elings, V., and Hansma, P.K. 1988. Scanning tunneling microscopy of freeze-fracture replicas of biomembranes. Science 239:1013

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Michael J. Dykstra

About this chapter

Cite this chapter

Dykstra, M.J. (1992). Scanning Tunneling Microscopy and Its Derivatives. In: Biological Electron Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0010-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0010-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0012-0

  • Online ISBN: 978-1-4684-0010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics