Skip to main content
  • 222 Accesses

Abstract

The first question that arises when considering cryotechniques in general is, what advantages are there to cryofixation? As we discussed in Chapter 1, fixation ideally instantaneously stops biological activity, immobilizes cellular components, and enables them to withstand any further processing procedures. In principle, biological materials can be fixed with either chemical or physical (cold, heat) techniques. Good chemical fixation requires the fast diffusion of chemical agents through membranes and cytoplasmic components. Cryofixation, on the other hand, requires the rapid diffusion of heat out of the specimen. The reason cryofixation can be superior to chemical fixation is that the rate of chemical diffusion into the specimen is much slower than the rate of heat diffusion out of the specimen. However, most cryofixation techniques adequately freeze samples to no more than 15 µm, in contrast to chemical fixation, which consistently fixes samples to a depth of 0.5 mm. Cryofixation is often inferior for structural studies because of the limited sample size available, but is vastly superior to chemical fixation for many microanalytical or immunocytochemical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • amorphous phase tissue water without ice crystal damage: A preparative method for ultrastructural analysis and immunoelectron microscopy.J. Histochem. Cytochem. 34:1123.

    Google Scholar 

  • Moor, H. 1986. Theory and practice of high pressure freezing. In:Cryotechniques in biological electron microscopy R.A. Steinbrecht and K. Zierold, eds.), Springer-Verlag, New York.

    Google Scholar 

  • Moor, H. and Riehle, U. 1968. Snap-freezing under high pressure: A new fixation technique for freezeetching. In: Proceedings of the Fourth European Regional Conference on Electron Microscopy, D.S. Bocciarelli (ed.), Tipografia Poliglotta Vaticana, Rome, 2:33.

    Google Scholar 

  • Moor, H., Muhlethaler, K., Waldner, H., and Frey-Wyssling, A. 1961. A new freezing ultramicrotome. J. Biophys. Biochem. Cytol. 10:1.

    Article  PubMed  CAS  Google Scholar 

  • Moor, H., Bellin, G., Sandri, C., and Akert, K. 1980. The influence of high pressure freezing on mammalian nerve tissue. Cell Tissue Res. 209:201.

    Article  PubMed  CAS  Google Scholar 

  • Müller, M., Meister, N., and Moor, H. 1980. Freezing in a propane jet and its application in freezefracturing.Mikroskopie (Wein) 36:129.

    Google Scholar 

  • Robards, A.W., and Crosby, P. 1983. Optimisation of plunge freezing: Linear relationship between cooling rate and entry velocity into liquid propane. Cryo-Letters 4:23.

    Google Scholar 

  • Robards, A.W., and Sleytr, U.B. 1985. Low temperature methods in biological electron microscopy. Elsevier, New York.

    Google Scholar 

  • Roos, N., and Morgan, A.J. 1990. Cryopreparation of thin biological specimens for electron microscopy: Methods and applications. RMS Microscopy Handbook No. 21. Oxford University Press, New York.

    Google Scholar 

  • Sjostrand, F.S., and Baker, R.F. 1958. Fixation by freeze-drying for electron microscopy of tissue cells. J. Ultrastruct. Res. 1:239.

    Article  PubMed  CAS  Google Scholar 

  • Steere, R.L. 1957. Electron microscopy of structural detail in frozen biological specimens. J. Biophys. Biochem. Cytol. 3:45.

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecht, R.A., and Muller, M. 1987. Freeze-substitution and freeze-drying. In: Cryotechniques in biological electron microscopy. R.A. Steinbrecht and K. Zierold (eds.), Springer-Verlag, New York, pp. 149–172.

    Chapter  Google Scholar 

  • Steinbrecht, R.A., and Zierold, K. (eds.). 1987. Cryotechniques in biological electron microscopy. Springer-Verlag, New York.

    Google Scholar 

  • Tokuyasu, K.T. 1973. A technique for ultramicrotomy of cell suspensions and tissues. J. Cell Biol. 57:551.

    Article  PubMed  CAS  Google Scholar 

  • Van Harreveld, A., and Crowell, J. 1964. Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat. Rec. 149:381

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Michael J. Dykstra

About this chapter

Cite this chapter

Dykstra, M.J. (1992). Cryotechniques. In: Biological Electron Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0010-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0010-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0012-0

  • Online ISBN: 978-1-4684-0010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics