Skip to main content

Identifying Links Between Genotype and Phenotype Using Marker Loci and Candidate Genes

  • Chapter
The Impact of Plant Molecular Genetics

Abstract

The elucidation of the causal links between variation at the genetic level and the emergent phenotype has been at the heart of theoretical and empirical studies in quantitative and population genetics since the rediscovery of Mendel’s work and the synthesis of Mendelism, Darwinism, and Biometry through population genetics (Provine, 1971). Wright (1980, 1982) has summarized the historical emergence of four predominant interpretations to the relationship between genotype and phenotype (Figure 1). The first relationship (Figure 1A) represents a one to one mapping of genotype to phenotype. This relationship applies to genes of major effect, the traditional Mendelian view of inheritance (Haldane, 1932). Kimura’s (1983) neutral theory of evolution is depicted in relationship (Figure 1C), where variation at the genotype has no relationship to variation seen at the phenotypic level. Figures 1B and 1D represent the predominant views of the relationships between genotype and phenotype. Relationship (1B) represents multiple genes with minor additive effects on phenotypic variation, a view forcefully put forth by Fisher (1930). Relationship (1D) represents genic relationships with pleiotropic effects producing a maze of interaction influencing the phenotype (Wright, 1931; Wright, 1932). This chapter outlines the uses of molecular techniques to identify loci, genes, alleles, and mutations associated with variation at the phenotypic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boerwinkle E, Hallman DM (1993): Genotype-by-environment interaction: It’s a face of life. In: Genetics of Cellulan Individual, Family, and Population Variability, Sing CF, Hanis CL, eds. Oxford: Oxford University Press

    Google Scholar 

  • Boerwinkle E, Chakraborty R, Sing CF (1986): The use of measured genotype information in the analysis of quantitative phenotypes in man. Ann Hum Genet 50:181–194

    Article  PubMed  CAS  Google Scholar 

  • Boerwinkle E, Visvikis S, Welsh D, Steinmetz J, Hanash SM, Sing CF (1987): The use of measured genotype information in the analysis of quantitative phenotypes in man. II. The role of the apolipoprotein E polymorphism in determining levels, variability and covariability of cholesterol, betalipoprotein and triglycerides in a sample of unrelated individuals. Am J Med Genet 27: 567–582

    Article  PubMed  CAS  Google Scholar 

  • Bonierbale MW, Plaisted RL, Pineda O, Tanksley SD (1994): QTL analysis of trichome-mediated insect resistance in potato. Theor Appl Genet 87: 973–987

    Article  CAS  Google Scholar 

  • Brummer CC, Bouton JH, Kodiert G (1993): Development of an RFLP map in diploid alfalfa. Theor Appl Genet 86:329–332

    Article  CAS  Google Scholar 

  • Carbonell EA, Gerig TM, Balansard E, Asins MJ (1992): Interval mapping in the analysis of nonadditive quantitative trait loci. Biometrics 48:305–315

    Article  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994): Saturated molecular map of the rice genome based on an interspecific back-cross population. Genetics 138:1251–1274

    PubMed  CAS  Google Scholar 

  • Chan T, Lee M, Sakmar TP (1992): Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. J Biol Chem 267: 9478–9480

    PubMed  CAS  Google Scholar 

  • Cheverud JM, Routman E (1993): Quantitative trait loci: individual gene effects on quantitative characters. J Evol Biol 6:463–480

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994): Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cowen NM (1989): Multiple linear regression analysis of RFLP data sets used in mapping QTLs. In: Development and Application of Molecular Markers to Problems in Plant Genetics, Helentjaris T, Burr B, eds. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory

    Google Scholar 

  • Crandall KA (1994): Intraspecific cladogram estimation: Accuracy at higher levels of divergence. Syst Biol 43:222–235

    Google Scholar 

  • Crandall KA, Templeton AR, Sing CF (1994): Intraspecific phylogenetics: Problems and solutions. In: Models in phylogeny reconstruction, Scotland RW, Siebert DJ, Williams DM, eds. Oxford, England: Clarendon Press

    Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weiler JI, Soller M (1993): Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    PubMed  CAS  Google Scholar 

  • Da Silva JAG, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS (1995): Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP- and PCR-based markers. Mol Breed 1:165–179

    Article  CAS  Google Scholar 

  • Devey ME, Fiddler TA, Liu B-H, Knapp SJ, Neale DB (1994): An RFLP linkage map for loblolly pine based on a three-generation outbred pedigree. Theor Appl Genet 88:273–278

    Article  CAS  Google Scholar 

  • Durham RE, Liou PC, Gmitter FG Jr, Moore GA (1992): Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theor Appl Genet 84:39–48

    Article  CAS  Google Scholar 

  • Eaves LJ (1994): Effect of genetic architecture on the power of human linkage studies to resolve the contribution of quantitative trait loci. Heredity 72:175–192

    Article  PubMed  Google Scholar 

  • Edwards MD, Helentjaris T, Wright S, Stuber CW (1992): Molecular-marker-facilitated investigations of quantitative trait loci in maize 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet 83:765–774

    Article  CAS  Google Scholar 

  • Ellegren H, Chowdhary BP, Johansson M, Marklund L, Fredholm M, Gustavs-son I, Andersson L (1994): A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137:1089–1100

    PubMed  CAS  Google Scholar 

  • Ellis THN, Turner L, Hellens RP, Lee D, Harker CL, Enard C, Domoney C, Davies DR (1992): Linkage maps in pea. Genetics 130:649–663

    PubMed  CAS  Google Scholar 

  • Falconer DS (1989): Introduction to Quantitative Genetics. New York: John Wiley

    Google Scholar 

  • Faure S, Noyer JL, Horry JP, Bakry F, Canaud C (1993): A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526

    Article  CAS  Google Scholar 

  • Fisher RA (1918): The correlations between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinb 52:399–433

    Google Scholar 

  • Fisher RA (1930): The Genetical Theory of Natural Selection. Oxford: Oxford University Press

    Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993): Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930

    PubMed  CAS  Google Scholar 

  • Gerber S, Rodolphe F (1994): Estimation and test for linkage between markers: a comparison of lod score and chi-square test in a linkage study of maritime pine (Pinus pinaster Ait). Theor Appl Genet 88:293–297

    Google Scholar 

  • Gerber S, Rodolphe F, Bahrman N, Baradat P (1993): Seed-protein variation in maritime pine (Pinus pinaster Ait.) revealed by two-dimensional electrophoresis: genetic determinism and construction of a linkage map. Theor Appl Genet 85:521–528

    Article  CAS  Google Scholar 

  • Haidane JBS (1932): The Causes of Evolution. London: Longmans, Green

    Google Scholar 

  • Haley CS, Knott SA (1992): A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA, Elsen J-M (1994): Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207

    PubMed  CAS  Google Scholar 

  • Hallman DM, Visvikis S, Steinmetz J, Boerwinkle E (1994): The effect of variation in the apolipoprotein B gene on plasma lipid and apolipoprotein B levels. I. A likelihood-based approach to cladistic analysis. Ann Hum Genet 58: 35–64

    Article  PubMed  CAS  Google Scholar 

  • Haiward T, Stalker HT, Kodiert G (1993): Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  Google Scholar 

  • Haviland MB, Ferrell RE and Sing CF (1995a): A cladistic analysis of the relationship between variation in the low density lipoprotein receptor gene region and interindividual variation in plasma lipid, lipoprotein and apolipoprotein levels. Am J Hum Genet. in press

    Google Scholar 

  • Haviland MB, Kessling AM, Davignon J, Sing CF (1995b): Cladistic analysis of the apolipoprotein AI-CIII-AIV gene cluster using a healthy French Canadian sample. I. Haploid analysis. Ann Hum Genet. 59:211–231

    Article  PubMed  CAS  Google Scholar 

  • Hayashizaki Y, Hirotsune S, Okazaki Y, Shibata H, Akasako A, Muramatsu M, Kawai J, Hirasawa T, Watanabe S, Shiroishi T, Moriwaki K, Taylor BA, Mat-suda Y, Elliott RW, Manly KF, Chapman VM (1994): A genetic linkage map of the mouse using restriction landmark genomic scanning (RLGS). Genetics 138:1207–1238

    PubMed  CAS  Google Scholar 

  • Huestis GM, McGrath JM, Quiros CF (1993): Development of genetic markers in celery based on restriction fragment length polymorphisms. Theor Appl Genet 85:889–896

    Article  CAS  Google Scholar 

  • Jansen RC (1993): Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jansen RC (1994): Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138:871–881

    PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994): High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Jiang C, Zeng Z-B (1995): Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  CAS  Google Scholar 

  • Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ (1994): Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet 89: 42–48

    CAS  Google Scholar 

  • Kesseli RV, Paran I, Michelmore RW (1994): Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    PubMed  CAS  Google Scholar 

  • Kianian SF, Quiros CF (1992): Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554

    Article  Google Scholar 

  • Kilian A, Kleinhofs A, Villand P, Thorbjornsen T, Olsen O-A, Kleczkowski LA (1994): Mapping of the ADP-glucose pyrophosphorylase genes in barley. Theor Appl Genet 87:869–871

    Article  CAS  Google Scholar 

  • Kimura M (1983): The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press

    Google Scholar 

  • Kleinhofs A, Kilian A, Maroof SMA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993): A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Knapp SJ (1991): Using molecular markers to map multiple quantitative trait loci: models for backcross, recombinant inbred, and doubled haploid progeny. Theor Appl Genet 81:333–338

    Article  CAS  Google Scholar 

  • Knapp SJ, Bridges WC Jr, Birkes D (1990): Mapping quantitative trait loci using molecular marker linkage maps. Theor Appl Genet 79:583–592

    Article  Google Scholar 

  • Knott SA, Haley CS (1992a): Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genet Res 60:139–151

    Article  Google Scholar 

  • Knott SA, Haley CS (1992b): Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics 132:1211–1222

    PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1986): Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc Natl Acad Sci USA 83:7353–7357

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989): Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE (1991): A genetic map for Brassica napus based on restriction fragment polymorphisms detected with expressed DNA sequences. Genome 34:543–552

    Article  CAS  Google Scholar 

  • Langley CH, Shrimpton AE, Yamazaki T, Miyashita N, Matsuo Y, Aquadro CF (1988): Naturally occurring variation in the restriction map of the Amy region of Drosophila melanogaster. Genetics 119:619–629

    PubMed  CAS  Google Scholar 

  • Lark KG, Weisemann JM, Matthews BF, Palmer R, Chase K, Macalma T (1993): A genetic map of soybean (Glycine max L.) using an intraspecific cross of two cultivars: ‘Minosy’ and ‘Noirl’. Theor Appl Genet 86:901–906

    Article  CAS  Google Scholar 

  • Lusis AJ (1988): Genetic factors affecting blood lipoproteins: the candidate gene approach. J Lipid Res 29:397–429

    PubMed  CAS  Google Scholar 

  • Martinez O, Curnow RN (1992): Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet 85: 480–488

    Article  Google Scholar 

  • Moreno-Gonzalez J (1992): Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor Appl Genet 85:435–444

    Google Scholar 

  • Nelson CD, Nance WL, Doudrick RL (1993): A partial genetic linkage map of slash pine (Pinus elliottii Engelm. var. elliottii) based on random amplified polymorphic DNAs. Theor Appl Genet 87:145–151

    Article  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988): Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726

    Article  PubMed  CAS  Google Scholar 

  • Philipp U, Wehling P, Wricke G (1994): A linkage map of rye. Theor Appl Genet 88:243–248

    Article  CAS  Google Scholar 

  • Pillen K, Steinrucken G, Wricke G, Herrman RG, Jung C (1992): A linkage map of sugar beet (Beta vulgaris L.). Theor Appl Genet 84:129–135

    Article  CAS  Google Scholar 

  • Provine WB (1971): The Origins of Theoretical Population Genetics. Chicago: University of Chicago Press

    Google Scholar 

  • Rebai A, Goffinet B, Mangin B (1994): Approximate thresholds of interval mapping tests for QTL detection. Genetics 138:235–240

    PubMed  CAS  Google Scholar 

  • Reiter RS, Williams JG, Feldman KA, Rafalsk JA, Tingey SV, Scolnik PA (1992): Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci USA 89:1477–1481

    Article  PubMed  CAS  Google Scholar 

  • Rodolphe F, Lefort M (1993): A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics 134:1277–1288

    PubMed  CAS  Google Scholar 

  • Roff DA, Bentzen P (1989): The statistical analysis of mitochondrial DNA polymorphisms: Chi-square and the problem of small samples. Mol Biol Evol 6: 539–545

    PubMed  CAS  Google Scholar 

  • Routman E, Cheverud JM (1994): Individual genes underlying quantitative traits: Molecular and analytical methods. In: Molecular Ecology and Evolution: Approaches and Applications, Schierwater B, Strait B, Wagner GP, DeSalle R, eds. Basel, Switzerland: Birkhauser Verlag

    Google Scholar 

  • Sing CF, Reilly SL (1993): Genetics of common diseases that aggregate, but do not segregate, in families. In: Genetics of cellular, individual family, and population variability, Sing CF, Hanis CL, eds. Oxford: Oxford University Press

    Google Scholar 

  • Sing CF, Boerwinkle E, Moll PP, Templeton AR (1988): Characterization of genes affecting quantitative traits in humans. In: Proceedings of the Second International Conference on Quantitative Genetics, Weir BS, Eisen EJ, Goodman MM & Namkoong G, eds. Sunderland, MA: Sinauer Associates

    Google Scholar 

  • Sing CF, Davignon J (1985): Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am J Hum Genet 37: 268–285

    PubMed  CAS  Google Scholar 

  • Sing CF, Haviland MB, Templeton AR, Zerba KE, Reilly SL (1992a): Biological complexity and strategies for finding DNA variations responsible for inter-individual variation in risk of a common chronic disease, coronary artery disease. Ann Med 24:539–547

    Article  PubMed  CAS  Google Scholar 

  • Sing CF, Haviland MB, Zerba KE, Templeton AR (1992b): Application of cladis-tics to the analysis of genotype-phenotype relationships. Eur J Epidemiol 8: 3–9

    Article  PubMed  Google Scholar 

  • Soller M, Brody T, Genizi A (1976): On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39

    Article  Google Scholar 

  • Tanksley SD (1993): Mapping polygenes. Ann Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992): High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Templeton AR (1995): A cladistic analysis of phenotypic associations with hap-lotypes inferred from restriction endonuclease mapping or DNA sequencing. V. Analysis of case/control sampling designs: Alzheimer’s disease and the apoprotein E locus. Genetics 140:403–409

    PubMed  CAS  Google Scholar 

  • Templeton AR, Sing CF (1993): A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669

    PubMed  CAS  Google Scholar 

  • Templeton AR, Boerwinkle E, Sing CF (1987): A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117:343–351

    PubMed  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992): A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    PubMed  CAS  Google Scholar 

  • Templeton AR, Sing CF, Kessling A, Humphries S (1988): A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonu-clease mapping. II. The analysis of natural populations. Genetics 120: 1145–1154

    PubMed  CAS  Google Scholar 

  • Torres AM, Weeden NF, Martin A (1993): Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945

    Article  CAS  Google Scholar 

  • Vallejos CE, Sakiyama NS, Chase CD (1992): A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics 131:733–740

    PubMed  CAS  Google Scholar 

  • Veldboom LR, Lee M, Woodman WL (1994): Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet 88:7–16

    Article  CAS  Google Scholar 

  • Webb DM, Knapp SJ, Tagliani LA (1992): Restriction fragment length polymorphism and allozyme linkage map of Cuphea lanceolata. TheorAppl Genet 83:528–532

    Article  Google Scholar 

  • Weller JI (1986): Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42: 627–640

    Article  PubMed  CAS  Google Scholar 

  • Weller JI (1987): Mapping and analysis of quantitative trait loci in Lycopersicon (tomato) with the aid of genetic markers using appropriate maximum likelihood methods. Heredity 59:413–421

    Article  Google Scholar 

  • Wright S (1921): Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  • Wright S (1931): Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1932): The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proc VI Internat Genet Cong 1:356–366

    Google Scholar 

  • Wright S (1980): Genic and organismic selection. Evolution 34:825–843

    Article  Google Scholar 

  • Wright S (1982): Character change, speciation, and the higher taxa. Evolution 36:427–443

    Article  Google Scholar 

  • Yokoyama S (1995): Amino acid replacements and wavelength absorption of visual pigments in vertebrates. Mol Biol Evol 12:53–61

    PubMed  CAS  Google Scholar 

  • Yokoyama R, Yokoyama S (1990): Convergent evolution of the red- and greenlike visual pigment genes in fish, Astyanax facsiatus, and human. Proc Natl Acad Sci USA 87:9315–9318

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z-B (1993): Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z-B (1994): Precision mapping of quantitative trait loci. Genetics 136: 1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang Q, Maroof MAS, Kleinhofs A (1993): Comparative diversity analysis of RFLPs and isozymes within and among populations of Hordeum vulgare ssp. spontaneum. Genetics 134:909–916

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Crandall, K.A. (1996). Identifying Links Between Genotype and Phenotype Using Marker Loci and Candidate Genes. In: Sobral, B.W.S. (eds) The Impact of Plant Molecular Genetics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9855-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9855-8_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9857-2

  • Online ISBN: 978-1-4615-9855-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics