Skip to main content

The Potential Impacts of Apomixis: A Molecular Genetics Approach

  • Chapter
The Impact of Plant Molecular Genetics

Abstract

Any volume purporting to describe the impacts of plant molecular genetics can currently deal only with anticipated impacts, rather than actual and measurable effects. It will still be years until a substantial change in agricultural practice and economic return ensue from these research efforts. Thus, it is relevant here to speculate on and outline strategies for achieving the best possible outcome from development of a new technology. In this chapter, we will describe some of the avenues that may be productive for development of apomixis as a powerful new technology, and speculate on impacts that could be achieved with proper attention (Bicknell, 1994c; Jefferson, 1992)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angenent GC, Franken J, Busscher M, Colombo L, van Tunen AJ (1993): Petal and stamen formation in petunia is regulated by the homeotic gene fbpl. Plant 7 4:101–112

    Google Scholar 

  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons JJM, van Tunen AJ (1995): Ovule identity in petunia is determined by a novel class of MADS box genes (in press)

    Google Scholar 

  • Asker SE, Jerling L (1992): Apomixis in plants. Boca Raton, FL: CRC Press

    Google Scholar 

  • Bergstrom G (1969): Influence of temperature, light and resting stage on morphology, meiosis, pollen formation and seed fertility in apomictic Hieracium robustum. Hereditas 62:429–433

    Article  Google Scholar 

  • Bicknell RA (1994a): Micropropagation of Hieracium aurantiacum. Plant Cell Tissue Organ Cult 37:197–199

    Article  CAS  Google Scholar 

  • Bicknell RA, Borst NK (1994b): Agrobacterium-mediated transformation of Hieracium aurantiacum. Int J Plant Sci 155(4):467–470

    Article  Google Scholar 

  • Bicknell RA (1994c): Hieracium; A model system for studying the molecular genetics of apomixis. ANL 7:8–10

    Google Scholar 

  • Bicknell RA (1994d): Evidence for the transposition of the Ac transposable element from maize, in the facultative apomict, Hieracium aurantiacum. In: Proceedings of the Queenstown Molecular Biology Meeting. Queenstown, New Zealand.

    Google Scholar 

  • Bilinski CA, Marmiroli N, Miller JJ (1989): Apomixis in Saccharomyces cere-visiae and other eukaryotic micro-organisms. Adv Microb Physiol 30:23–52

    Article  PubMed  CAS  Google Scholar 

  • Borges do Valle C, Glienke C, Leguizamon GOC (1994): Inheritance of apomixis in Brachiaria, a tropical forage grass. ANL 7:42–43

    Google Scholar 

  • Chaudhury AM (1995): personal communication

    Google Scholar 

  • Dresselhaus T, Lorz H, Kranz E (1994): Representative cDNA libraries from few plant cells. Plant J 5(4):605–610

    Article  PubMed  CAS  Google Scholar 

  • Gadella TWJ (1991): Variation, hybridization and reproductive biology of Hieracium pilosella L Proc Kon Ned Akad V Wetensch 94(4):455–488

    Google Scholar 

  • Gatz C, Quail PH (1988): Tn10-encoded tet repressor can regulate an operator-containing plant promoter. Proc Natl Acad Sci USA 85:1394–7

    Article  PubMed  CAS  Google Scholar 

  • Gatz C, Frohberg C, Wendenburg R (1992): Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 2:397–404

    PubMed  CAS  Google Scholar 

  • Gustafsson A (1946): Apomixis in Higher Plants. Svalof, Lund

    Google Scholar 

  • Hemerly A, Bergounioux C, Van Montagu M, Inze D, Ferreira P (1992): Genes regulating the plant cell cycle: isolation of a mitotic-like cyclin from Ara-bidopsis thaliana. Proc Natl Acad Sci USA 89:3295–9

    Article  PubMed  CAS  Google Scholar 

  • Hirt H, Pay A, Bogre L, Meskiene I, Heberle-Bors E (1993): cdc2MsB, a cognate cdc2 gene from alfalfa, complements the G1/S but not the G2/M transition of budding yeast cdc28 mutants. Plant J 4:61–9

    Article  PubMed  CAS  Google Scholar 

  • Hirt H, Mink M, Pfosser M, Bogre L, Gyorgyey J, Jonak C, Gartner A, Dudits D, Heberle-Bors E (1992): Alfalfa cyclins: differential expression during the cell cycle and in plant organs. Plant Cell 4:1531–8

    Article  PubMed  CAS  Google Scholar 

  • Hirt H, Pay A, Gyorgyey J, Bako L, Nemeth K, Bogre L, Schweyen RJ, Heberle-Bors E, Dudits D (1991): Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2 Proc Natl Acad Sci U S A 88:1636–40

    Article  PubMed  CAS  Google Scholar 

  • Honigberg SM, Esposito RE (1994): Reversal of cell determination in yeast meio-sis: postcommitment arrest allows return to mitotic growth. Proc Natl Acad Sci U S A 91:6559–6563

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1992): Strategic development of apomixis as a general tool for agriculture. In: Wilson KJ, ed. Proceedings of the International Workshop on Apomixis in Rice; 1992 Jan; Changsha, China. New York: Rockefeller Foundation

    Google Scholar 

  • Jonak C, Pay A, Bogre L, Hirt H, Heberle-Bors E. (1993): The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner. Plant J 3:611–7

    Article  PubMed  CAS  Google Scholar 

  • Kassir Y, Granot D, Simchen G (1988): IME1, a positive regulator gene of meio-sis in S. cerevisiae. Cell 52:853–62

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Hotta Y, Tabata S (1993): Isolation and characterization of a yeast gene that is homologous with a meiosis-specific cDNA from a plant. Mol Gen Genet 237:225–32

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990): Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992): Differential display of eukaryotic messenger RNA by means of the Polymerase Chain Reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, Goldberg RB, Leemans J (1991): Engineered male sterility in plants. Symp Soc Exp Biol 45:275–9

    Google Scholar 

  • Mendel GJ (1866): Versuche ber Pflanzenhybriden. Verh Naturforsch Ver Brunn 4:3

    Google Scholar 

  • Mett VL, Lochhead LP, Reynolds PH (1993): Copper-controllable gene expression system for whole plants. Proc Natl Acad Sci U S A 90:4567–71

    Article  PubMed  CAS  Google Scholar 

  • Nogler GA (1975): Genetics of apospory in Ranunculus auricomus. VI. Emby-ology of F3 and F4 backcross offspring. Phytomorph 25:485–490

    Google Scholar 

  • Ostenfeld CH (1906): Experimental and cytological studies in the Hieracia. I. Castration and hybridization experiments with some species of Hieracia. Bot Tids 27:225–248

    Google Scholar 

  • Ozias-Akins P, Lubbers EL, Hanna WW, McNay JW. (1993): Transmission of the apomictic mode of reproduction in Pennisetum: co-inheritance of the trait and molecular markers. Theor Appl Genet 1993(85):632–638

    Google Scholar 

  • Peterson RL, Yeung EC (1972): Effect of two gibberellins on species of the rosette plant Hieracium. Bot Gaz 133:190–198

    Article  Google Scholar 

  • Philipson WR (1948): Studies in the development of inflorescence. IV. The capitula of Hieracium borĂ©ale Fries and Dahlia gracilis Ortg. Ann Bot 12:65–75

    Google Scholar 

  • Richards AJ (1986): Plant Breeding Systems. London: George Allen & Unwin

    Google Scholar 

  • Roder FT, Schmulling T, Gatz C (1994): Efficiency of the tetracycline-dependent gene expression system: complete suppression and efficient induction of the rolB phenotype in transgenic plants. Mol Gen Genet 243:32–8

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser A (1948): Pseudogamie und Polymorphie in der Gattung Potentilla. Arch Julius-klaus-Stifiung fĂĽr Vererb-Forsch 23:267–424

    Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1991): A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 88:10421–5

    Article  PubMed  CAS  Google Scholar 

  • Skalinska M (1971): Experimental and embryological studies in Hieracium au-rantiacum L. Acta Biol Crac ser Bot 14:139–155

    Google Scholar 

  • Skalinska M (1973): Further studies in facultative apomixis of Hieracium au-rantiacum L. Acta Biol Crac ser Bot 16:121–137

    Google Scholar 

  • Skalinska M, Kubien E (1972): Cytological and embryological studies in Hier-aceum pratense Tausch. Acta Biol Crac ser Bot 15:39–50

    Google Scholar 

  • Staiger CJ, Cande WZ (1992): Ameiotic, a gene that controls meiotic chromosome and cytoskeletal behavior in maize. Dev Biol 154:226–30

    Article  PubMed  CAS  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1976): Flora Europea. Cambridge: Cambridge University Press

    Google Scholar 

  • Weinmann P, Gossen M, Hillen W, Bujard H, Gatz C (1994): A chimeric trans-activator allows tetracycline-responsive gene expression in whole plants. Plant J 5:559–69

    Article  PubMed  CAS  Google Scholar 

  • Yeung E C, Peterson RL (1971): Studies on the rosette plant Hieracium flori-bundum. I. Observations related to flowering and axillary bud development. Can J Bot 50:73–78

    Article  Google Scholar 

  • Yoshida M, Kawaguchi H, Sakata Y, Kominami K, Hirano M, Shima H, Akada R, Yamashita I (1990): Initiation of meiosis and sporulation in Saccharomyces cerevisiae requires a novel protein kinase homologue. Mol Gen Genet 221: 176–86

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994): The ABCs of floral homeotic genes. Cell 78: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Welsh J, Chada K, Dalai SS, Cheng R, Ralph D, McClelland M (1992): Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Research 20:4965–4970

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Jefferson, R.A., Bicknell, R. (1996). The Potential Impacts of Apomixis: A Molecular Genetics Approach. In: Sobral, B.W.S. (eds) The Impact of Plant Molecular Genetics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9855-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9855-8_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9857-2

  • Online ISBN: 978-1-4615-9855-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics