Skip to main content

Molecular Mechanisms of Thyroid Hormone and Retinoic acid Action

  • Chapter
Steroid Hormone Receptors: Basic and Clinical Aspects

Part of the book series: Hormones in Health and Disease ((HHD))

  • 245 Accesses

Abstract

Understanding of the molecular mechanisms that underlie the large diversity of biological responses to thyroid hormones and the vitamin A derived hormones (retinoids) has been greatly advanced by the cloning of specific intracellular receptors for thyroid hormone (T3) and retinoic acid (RA) (Sap et al, 1986; Weinberger et al, 1986; Benbrook and Pfahl, 1987; Petkovich et al, 1987; Giguere et al, 1987; Benbrook et al, 1988; Brand et al, 1988; Thompson et al, 1987; Nakai et al, 1988; Giguere et al, 1990; Krust et al, 1989). In mammals, T3 receptors (TRs) are encoded by two genes, TRα and TRβ, while the retinoid receptors are encoded by at least six genes that fall into two subfamilies, the classical RA receptors (RARs) α, β, and γ, and the retinoid X receptors (RXRs) α, β, and γ (Hamada et al, 1989; Mangelsdorf et al 1990; 1992; Yu et al, 1991; Leid et al, 1992,). From the individual receptor genes, different isoforms can be generated by differential splicing and/or different promoter usage (Lehmann et al, 1991; Leroy et al, 1991; Zelent et al, 1991; Benbrook and Pfahl, 1987; Nakai et al, 1988). TRs, RARs, and RXRs belong to a subgroup of the nuclear receptor superfamily that have closely related DNA binding domains (reviewed in Umesono and Evans, 1989) and that are able to recognize and function from overlapping and related response elements. This subfamily of receptors includes also the vitamin D receptor (VDR), the peroxisome proliferator activated receptor (PPAR) (Issemann and Green, 1990; Dreyer et al, 1992), as well as the COUP and other orphan receptors for which specific ligands are not known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benbrook D and Pfahl M (1987): A novel thyroid hormone receptor encoded by a cDNA clone from a human testis library. Science 238: 788–791.

    Article  PubMed  CAS  Google Scholar 

  • Benbrook D, Lernhardt E and Pfahl M (1988): A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature 333: 669–672.

    Article  PubMed  CAS  Google Scholar 

  • Brand N, Petkovich M, Krust A, de The H, Marchio A, Tiollais P and Dejean D (1988): Identification of a second human retinoic acid receptor. Nature 332: 850–853.

    Article  PubMed  CAS  Google Scholar 

  • Bugge TH, Pohl J, Lonnoy O and Stunnenberg HG (1992): RXRα, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J 11: 1409–1418.

    PubMed  CAS  Google Scholar 

  • Cooney AJ, Tsai SY, O’Malley BW and Tsai MJ (1992): Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 12: 4153–4163.

    PubMed  CAS  Google Scholar 

  • Desvergne B, Petty KJ and Nikodem VM (1991): Functional characterization and receptor binding studies of the malic enzyme thyroid hormone response element. J Biol Chem 266: 1008–1013.

    PubMed  CAS  Google Scholar 

  • de Thé H, Vivanco-Ruiz MM, Tiollais P, Stunnenberg H and Dejean A (1990): Identification of a retinoic acid response element in the retinoic acid receptor β gene. Nature 343: 177–180.

    Article  PubMed  Google Scholar 

  • Dreyer C, Krey G, Keller H, Givel F, Helftenbein G and Wahli W (1992): Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68: 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Evans RM (1988): The steroid and thyroid hormone receptor family. Science 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Ong ES, Seigi P and Evans RM (1987): Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629.

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Shago M, Zirngibl R, Tate P, Rossant J and Varmuza, S (1990): Identification of a novel isoform of the retinoic acid receptor γ expressed in the mouse embryo. Mol Cell Biol 10: 2335–2340.

    PubMed  CAS  Google Scholar 

  • Glass CK, Holloway JM, Devary OV and Rosenfeld MG (1988): The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54: 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Graupner G, Willis KN, Tzukerman M, Zhang X-K and Pfahl M (1989): Dual regulatory role for thyroid-hormone receptors allows control of retinoic-acid receptor activity. Nature 340: 653–656.

    Article  PubMed  CAS  Google Scholar 

  • Green S and Chambon P (1988): Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Gleason SL, Levi B-Z, Hirschfeld S, Apella E and Ozato K (1989): H-2RHBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element. Proc Natl Acad Sci USA 86: 8289–8293.

    Article  PubMed  CAS  Google Scholar 

  • Hermann T, Hoffmann B, Zhang X-K, Tran P and Pfahl M (1992): Heterodimeric receptor complexes determine 3,5,3′-triiodothyronine and retinoid signaling specificities. Mol Endocrinol 6: 1153–1162.

    Article  PubMed  CAS  Google Scholar 

  • Hermann T, Hoffmann B, Piedrafita JF, Zhang Z-K and Pfahl M (1993): V-erbA requires auxiliary proteins for dominant negative activity. Oncogene 8: 55–65.

    PubMed  CAS  Google Scholar 

  • Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM and Thaller C (1992): 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397–406.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Lehmann JM, Zhang X-K, Hermann T, Graupner G and Pfahl M (1990): A retinoic acid receptor specific element controls the retinoic acid receptor-β promoter. J Mol Endo 4: 1734–1743.

    Google Scholar 

  • Hong WK, Lippmann SM, Itri LM, Karp D, Lee JS, Bvers R, Schantz SP, Kramer AM, Lotan R, Peters LJ, Dimery IW, Brown WB and Goepfert H (1990): Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N Engl J Med 1323: 795–801.

    Article  Google Scholar 

  • Huang M, Ye YC, Chen SR, Chai JR, Lu JX, Zhao L, Gu LJ and Wang ZY (1988): Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 172: 567–572.

    Google Scholar 

  • Husmann M, Hoffmann B, Stump DG, Chytil F and Pfahl M (1992): A retinoic acid response element from the rat CRBPI promoter is activated by an RAR/RXR heterodimer. Biochem Biophys Res Commun 1187: 1558–1564.

    Article  Google Scholar 

  • Issemann I and Green S (1990): Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1347: 645–649.

    Article  Google Scholar 

  • Karin M (1990): The AP-1 complex and its role in transcriptional control by protein kinase C. In: Molecular Aspects of Cellular Regulation 6: 143–161.

    Google Scholar 

  • Kliewer SA, Umesono K, Mangelsdorf DJ and Evans RM (1992): Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signaling. Nature 1355: 446–449.

    Article  Google Scholar 

  • Kliewer SA, Umesono K, Noonan DJ, Heyman RA and Evans RM (1992): Convergence of 9-cis retinoic acid and peroxisome proliferator signaling pathways through heterodimer formation of their receptors. Nature 358: 771–774.

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Umesono K, Heyman RA, Mangelsdorf DJ, Dyck JA and Evans RM (1992c): Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc Natl Acad Sci USA 89: 1448–1452.

    Article  PubMed  CAS  Google Scholar 

  • Krust A, Kastner PH, Petkovich M, Zelent A and Chambon P (1989): A third human retinoic acid receptor, hRAR-γ. Proc Natl Acad Sci USA 86: 5310–5314.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Hoffmann B and Pfahl M (1991). Genomic organization of the retinoic acid receptor γ gene. Nucl Acids Res 19: 573–578.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Jong L, Fanjul A, Cameron JF, Lu XP, Haefner P, Dawson MI and Pfahl M (1992):. Retinoids selective for retinoid X receptor response pathways. Science 258: 1944–1946.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Zhang XK, Graupner G, Hermann T, Hoffmann B and Pfahl M (1993): Formation of RXR homodimers leads to repression of T3 response: hormonal cross-talk by ligand induced squelching. Mol Cell Biol (in press).

    Google Scholar 

  • Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J-Y, Staub A, Garnier J-M, Mader S and Chambon P (1992): Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68: 377–395.

    Article  PubMed  CAS  Google Scholar 

  • Leroy P, Krust A, Zelent A, Mendelsohn C, Garnier J-M, Kastner P, Dierich A and Chambon P (1991): Multiple isoforms of the mouse retinoic acid receptor α are generated by alternative splicing and differential induction by retinoic acid. EMBO J 10: 59–69.

    PubMed  CAS  Google Scholar 

  • Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger M, Lovey A and Grippo JF (1992): 9-cis retinoic acid steroisomer binds and activates the nuclear receptor RXRα. Nature 355: 359–361.

    Article  PubMed  CAS  Google Scholar 

  • Lippmann SM, Kessler JF and Meyskens FL (1987): Retinoids as preventive and therapeutic anticancer agents. Cancer Treat Rep 71: 493–505 (part I)’ 493-515 (part 2).

    Google Scholar 

  • Mahdavi V, Chambers AP and Nadal-Ginard B (1984): Cardiac α-and β-myosin heavy chain genes are organized in tandem. Proc Natl Acad Sci USA 81: 2626–2630.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Ong ES, Dyck JA and Evans RM (1990): Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345: 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES and Evans RM (1991): A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66: 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhan JY, Ong ES, Oro AE, Kakizuka A and Evans RM (1992): Characterization of three RXR genes that mediate the action of 9-cis RA retinoic acid. Genes Dev 6: 329–344.

    Article  PubMed  CAS  Google Scholar 

  • Marks MS, Hallenbeck PL, Nagata T, Segars JH, Appella E, Nikodem VM and Ozato K (1992): H-2RIIBP (RXRβ) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J 11: 1419–1435.

    PubMed  CAS  Google Scholar 

  • Miyajima N, Kadowaki Y, Fukushige S-I, Shimizu S-I, Semba K, Yamanashi Y, Matsubara K-I, Toyoshima K and Yamamoto T (1988): Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res 16: 11057–11074.

    Article  PubMed  CAS  Google Scholar 

  • Mlodzik M, Hiromi Y, Weber U, Goodman CS and Rubin GM (1990): The drosophilaseven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60: 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Murray MB and Towle HC (1989): Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element. Mol Endocrinol 3: 1434–1442.

    Article  PubMed  CAS  Google Scholar 

  • Näar AM, Boutin J-M, Lipkin SM, Yu VC, Holloway JM, Glass CK and Rosenfeld MG (1991): The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65: 1267–1279.

    Article  PubMed  Google Scholar 

  • Nakai A, Sakurai A, Bell GI and DeGroot LJ (1988): Characterization of a third human thyroid hormone receptor co-expressed with other thyroid hormone receptors in several tissues. Mol Endocrinol 2: 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  • Petkovich M, Brand NJ, Krust A and Chambon P (1987): Human retinoic acid receptor belongs to the family of nuclear receptors. Nature 330: 444–450.

    Article  PubMed  CAS  Google Scholar 

  • Rosen ED, O’Donnell AL and Koenig RJ (1991): Protein-protein interactions involving erbA superfamily receptors, through the TRAPdoor. Mol Cell Endocrinol 78: C83–C88.

    Article  PubMed  CAS  Google Scholar 

  • Rottman JN, Windom RL, Nadal-Ginard B, Mahdavi V and Karathanasis SK (1991): A retinoic acid-responsive element in the apolipoprotein Al gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 11: 3814–3820.

    PubMed  CAS  Google Scholar 

  • Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H and Vennstrom B (1986): The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1992): TATA-binding protein is a classless factor. Cell 68: 819–821.

    Article  PubMed  CAS  Google Scholar 

  • Thompson CC, Weinberger C, Lebo R and Evans RM (1987): Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science 237: 1610–1613.

    Article  PubMed  CAS  Google Scholar 

  • Tran P, Zhang X-K, Gilles S, Hermann T, Lehmann JM and Pfahl M (1992): COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol 12: 4666–4676.

    PubMed  CAS  Google Scholar 

  • Umesono K, Giguere V, Glass CK, Rosenfeld MG and Evans RM (1988): Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature (London) 336: 262–265.

    Article  CAS  Google Scholar 

  • Umesono K and Evans RM (1989): Determinants of Target Gene Specificity for steroid/thyroid hormone receptors. Cell 57: 1139–1146.

    Article  PubMed  CAS  Google Scholar 

  • Umesono K, Murakami KK, Thompson CC and Evans RM (1991): Direct repeats as selective response elements for the thyroid hormone, retinoic acid and vitamin D3 receptors. Cell 65: 1255–1266.

    Article  PubMed  CAS  Google Scholar 

  • Wang L-H, Tsai SY, Cook RG, Beattie WG, Tsai M-J and O’Malley BW (1989): COUP transcription factor is a member of the steroid receptor superfamily. Nature (London) 340: 163–166.

    Article  CAS  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ and Evans RM (1986): The c-erb-A gene encodes a thyroid hormone receptor. Nature 324: 641–646.

    Article  PubMed  CAS  Google Scholar 

  • Windom RL, Rhee M and Karathanasis K (1992): Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXRα and retinoic acid. Mol Cell Biol 12: 3380–3389.

    Google Scholar 

  • Yao T-P, Segraves WA, Oro AE, McKeown M and Evans RM (1992): Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Yang Yen H-F, Zhang X-K, Graupner G, Tzukerman M, Sakamoto B, Karin M and Pfahl M (1991): Antagonism between retinoic acid receptors and AP-1: implication for tumor promotion and inflammation. New Biol 3: 1216–1219.

    Google Scholar 

  • Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Näar AM, Kim SY, Boutin J-M, Glass CK and Rosenfeld MG (1991): RXRβ, a coregulator that enhances binding of retinoic acid, thyroid hormone and vitamin D receptors to their cognate response elements. Cell 67: 1251–1266.

    Article  PubMed  CAS  Google Scholar 

  • Zelent A, Mendelsohn C, Kastner P, Krust A, Garnier J-M, Ruffenach F, Leroy P and Chambon P (1991): Differentially expressed isoforms of the mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing. EMBO J 10: 71–81.

    PubMed  CAS  Google Scholar 

  • Zhang X-K, Wills KN, Hermann T, Graupner G, Tzukerman M and Pfahl M (1991a): Ligand-binding domain of thyroid hormone receptors modulates DNA binding and determines their bifunctional roles. New Biol 3: 1–14.

    CAS  Google Scholar 

  • Zhang X-K, Tran P and Pfahl M (1991b): DNA binding and dimerization determinants for TRα and its interaction with a nuclear protein. Mol Endocrinol 5: 1909–1920.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X-K, Wills KN, Husmann M, Hermann T and Pfahl M (1991c). Novel pathway for thyroid hormone receptor action through interaction with jun and fos oncogene activities. Mol Cell Biol 11: 6016–6025.

    PubMed  CAS  Google Scholar 

  • Zhang X-K, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T and Pfahl M (1992a): Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature (London) 358: 587–591.

    Article  CAS  Google Scholar 

  • Zhang X-K, Hoffmann B, Tran P, Graupner G and Pfahl M (1992b). Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature (London) 355: 441–446.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Pfahl, M. (1994). Molecular Mechanisms of Thyroid Hormone and Retinoic acid Action. In: Moudgil, V.K. (eds) Steroid Hormone Receptors: Basic and Clinical Aspects. Hormones in Health and Disease. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9849-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9849-7_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9851-0

  • Online ISBN: 978-1-4615-9849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics