Skip to main content

Functional Interaction of the Estrogen Receptor with the Tissue-Specific, Homeodomain Transcription Factor, PIT-1

  • Chapter
Steroid Hormone Receptors: Basic and Clinical Aspects

Part of the book series: Hormones in Health and Disease ((HHD))

  • 243 Accesses

Abstract

The prolactin gene has provided a useful system for analysis of the mechanisms which permit estrogen to stimulate the transcription of specific genes. A least two factors have aided studies of the estrogenic regulation of prolactin gene expression. One advantage of the prolactin system concerns the fact that prolactin is a major product of the pituitary. The relatively high level of prolactin gene expression has facilitated biochemical approaches to the analysis of prolactin production. The relatively high level expression has contributed to the preparation of a number of useful reagents including antibodies to prolactin and cDNAs encoding prolactin. A second factor concerns the availability of cell culture systems in which estrogen can stimulate prolactin gene expression in vitro. The GH clonal pituitary tumor cell lines which were developed by Armen Tashjian and Gordon Sato (Tashjian et al, 1968) have been particularly valuable for these studies. These cells produce both growth hormone and prolactin. A number of different clonal strains are available, with the GH3 cells perhaps the most widely used. While a number of studies have utilized primary cultures of rat pituitary cells, the GH3 cells offer a number of advantages. In particular, these cells have proven to be particularly useful for gene transfer experiments examining the DNA sequences and transcription factors required for expression of the prolactin gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson J, Clark JH and Peck EJ Jr (1972): Oestrogen and nuclear binding sites. Determination of specific sites by (3H)oestradiol exchange. Biochem J 126: 561–567.

    PubMed  CAS  Google Scholar 

  • Bailly A, Atger M, Atger P, Cerbon M-A, Alizon M, Hai MTV, Logeat F and Milgrom E (1983): The rabbit uteroglobin gene. Structure and interaction with the progesterone receptor. J Biol Chem 258: 10384–10389.

    PubMed  CAS  Google Scholar 

  • Bodner M, Castrillo J-L, Theill LE, Deerinck T, Ellisman M and Karin M (1988): The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell 55: 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Bodner M and Karin M (1987): A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell 50: 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Barron EA and Sharp ZD (1988): Prolactin upstream factor I mediates cell-specific transcription. Mol Cell Biol 8: 5432–5438.

    PubMed  CAS  Google Scholar 

  • Carey M, Lin Y-S, Green MR and Ptashne M (1990): A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345: 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Cato ACB, Heitlinger E, Ponta H, Klein-Hitpass L, Ryffel GU, Bailly A, Rauch C and Milgrom E (1988): Estrogen and progesterone receptor-binding sites on the chicken vitellogenin II gene: synergism of steroid hormone action. Mol Cell Biol 8: 5323–5330.

    PubMed  CAS  Google Scholar 

  • Cato ACB and Ponta H (1989): Different regions of the estrogen receptor are required for synergistic action with the glucocorticoid and progesterone receptors. Mol Cell Biol 9: 5324–5330.

    PubMed  CAS  Google Scholar 

  • Chamness GC, Jennings AW and McGuire WL (1974): Estrogen receptor binding to isolated nuclei. A nonsaturable process. Biochemistry 13: 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Compton JG, Schrader WT and O’Malley BW (1983): DNA sequence preference of the progesterone receptor. Proc Natl Acad Sci USA 80: 16–20.

    Article  PubMed  CAS  Google Scholar 

  • Day RN, Koike S, Sakai M, Muramatsu M and Maurer RA (1990): Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol Endocrinol 4: 1964–1971.

    Article  PubMed  CAS  Google Scholar 

  • Day RN and Maurer RA (1989): The distal enhancer region of the rat prolactin gene contains elements conferring response to multiple hormones. Mol Endocrinol 3: 3–9.

    Article  PubMed  CAS  Google Scholar 

  • Day RN and Maurer RA (1990): Pituitary calcium channel modulation and regulation of prolactin gene expression. Mol Endocrinol 4: 736–742.

    Article  PubMed  CAS  Google Scholar 

  • Diamond MI, Miner JN, Yoshinaga SK and Yamamoto KR (1990): Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249: 1266–1272.

    Article  PubMed  CAS  Google Scholar 

  • Durrin LK, Weber JL and Gorski J (1984): Chromatin structure, transcription and methylation of the prolactin gene domain in pituitary tumors of Fischer 344 rats. J Biol Chem 259: 7086–7093.

    PubMed  CAS  Google Scholar 

  • Edwards DP, Kuhnel B, Estes PA and Nordeen SK (1989): Human progesterone receptor binding to mouse mammary tumor virus deoxyribonucleic acid: dependence on hormone and nonreceptor nuclear factor(s). Mol Endocrinol 3: 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Fox SR, Jong MTC, Casanova J, Ye Z-S, Stanley F and Samuels HH (1990): The homeodomain protein, Pit-1/GHF-1, is capable of binding to and activating cell-specific elements of both the growth hormone and prolactin gene promoters. Mol Endocrinol 4: 1069–1080.

    Article  PubMed  CAS  Google Scholar 

  • Geyer PK and Corces VG (1992): DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes & Develop. 6: 1865–1873.

    Article  CAS  Google Scholar 

  • Gorski J, Toft D, Shyamala G, Smith D and Notides A (1968): Hormone receptors: studies on the interaction of estrogen with the uterus. Rec Progr Hormone Res 24: 45–80.

    CAS  Google Scholar 

  • Govindan MV, Spiess E and Majors J (1982): Purified glucocorticoid receptor-hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long terminal repeats in vitro. Proc Natl Acad Sci USA 79: 5157–5161.

    Article  PubMed  CAS  Google Scholar 

  • Griffith J, Hochschild A and Ptashne M (1986): DNA loops induced by cooperative binding of lambda repressor. Nature 322: 750–752.

    Article  PubMed  CAS  Google Scholar 

  • Gubbins EJ, Maurer RA, Hartley JL and Donelson JE (1979): Construction and analysis of recombinant DNAs containing a structural gene for rat prolactin. Nuc Acids Res 6: 915–930.

    Article  CAS  Google Scholar 

  • Gubbins EJ, Maurer RA, Lagrimini M, Erwin CR and Donelson JE (1980): Structure of the rat prolactin gene. J Biol Chem 255: 8655–8662.

    PubMed  CAS  Google Scholar 

  • Haug E and Gautvik KM (1976): Effects of sex steroids on prolactin secreting rat pituitary cells in culture. Endocrinology 99: 1482–1489.

    Article  PubMed  CAS  Google Scholar 

  • Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun G and Horvitz HR (1988): The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev 2: 1513–1516.

    Article  PubMed  CAS  Google Scholar 

  • Higgins S J, Rousseau GG, Baxter JD and Tomkins GM (1973): Nuclear binding of steroid receptors: comparison in intact cells and cell-free systems. Proc Natl Acad Sci USA 70: 3415–3418.

    Article  PubMed  CAS  Google Scholar 

  • Hoggard N, Davis JRE, Berwaer M, Monget P, Belayew BPA and Martial JA (1991): Pit-1 binding sequences permit calcium regulation of human prolactin gene expression. Mol Endocrinol 5: 1748–1754.

    Article  PubMed  CAS  Google Scholar 

  • Imai E, Stromstedt PE, Quinn PJ, Carlstedt-Duke J, Gustafsson JA and Granner DK (1990): Characterization of a complex glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 10: 4712–4719.

    PubMed  CAS  Google Scholar 

  • Ingraham HA, Chen R, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR, Simmons DM, Swanson L and Rosenfeld MG (1988): A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55: 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Jensen EV and DeSombre ER (1968): Estrogen-receptor interaction. Estrogenic hormones affect transformation of specific receptor proteins to a biochemically functional form. Science 182: 126–134.

    Article  Google Scholar 

  • Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW and DeSombre ER (1968): A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci USA 59: 632–638.

    Article  PubMed  CAS  Google Scholar 

  • Jost J-P, Seldran M and Geiser M (1984): Preferential binding of estrogen-receptor complex to a region containing the estrogen-dependent hypomethylation site preceding the chicken vitellogenin II gene. Proc Natl Acad Sci USA 81: 429–433.

    Article  PubMed  CAS  Google Scholar 

  • Kadesch T and Berg P (1986): Effects of the position of the simian virus 40 enhancer on expression of multiple transcription units in a single plasmid. Mol Cell Biol 6: 2593–2601.

    PubMed  CAS  Google Scholar 

  • Kim KE, Day RN and Maurer RA (1988): Functional analysis of the interaction of a tissue-specific factor with an upstream enhancer element of the rat prolactin gene. Mol Endocrinol 3: 1374–1381.

    Article  Google Scholar 

  • Klein-Hitpass L, Schorpp M, Wagner U and Ryffel GU (1986): An estrogen-responsive element derived from the 5′ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46: 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Hitpass L, Tsai SY, Greene GL, Clark JH, Tsai M-J and O’Malley BW (1989): Specific binding of estrogen receptor to the estrogen response element. Mol Cell Biol 9: 43–49.

    PubMed  CAS  Google Scholar 

  • Kumar V and Chambon P (1988): The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55: 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman ML, Maurer RA and Gorski J (1978): Estrogen control of prolactin synthesis in vitro. Proc Natl Acad Sci USA 75: 5946–5949.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod RM, Abad A and Eidson LL (1969): In vivo effect of sex hormones on the in vitro synthesis of prolactin and growth hormone in normal and pituitary tumor-bearing rats. Endocrinology 84: 1475–1483.

    Article  PubMed  CAS  Google Scholar 

  • Mangalam HJ, Albert VR, Ingraham HA, Kapiloff M, Wilson L, Nelson C, Elsholtz H and Rosenfeld MG (1989): A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev 3: 946–958.

    Article  PubMed  CAS  Google Scholar 

  • Maurer RA (1980): Immunochemical isolation of prolactin messenger RNA. J Biol Chem 255: 854–859.

    PubMed  CAS  Google Scholar 

  • Maurer RA (1981): Transcriptional regulation of the prolactin gene by ergocryptine and cyclic AMP. Nature 294: 94–97.

    Article  PubMed  CAS  Google Scholar 

  • Maurer RA (1982): Estradiol regulates the transcription of the prolactin gene. J Biol Chem 257: 2133–2136.

    PubMed  CAS  Google Scholar 

  • Maurer RA (1985): Selective binding of the estradiol receptor to a region at least one kilobase upstream from the rat prolactin gene. DNA 4: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Maurer RA and Gorski J (1977): Effects of estradiol-17β and pimozide on prolactin synthesis in male and female rats. Endocrinology 101: 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Maurer RA and Notides AC (1987): Identification of an estrogen-responsive element from the 5′-flanking region of the rat prolactin gene. Mol Cell Biol 7: 4247–4254.

    PubMed  CAS  Google Scholar 

  • McKnight GS and Palmiter RD (1979): Transcriptional regulation of the ovalbumin and conalbumin genes by steroid hormones in chick oviduct. J Biol Chem 254: 9050–9058.

    PubMed  CAS  Google Scholar 

  • Meyer M-E, Gronemeyer H, Turcotte B, Bocquel M-T, Tasset D and Chambon P (1989): Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57: 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Muller HP, Sogo JM and Schaffner W (1989): An enhancer stimulates transcription in trans when attached to promoter via a protein bridge. Cell 58: 767–777.

    Article  Google Scholar 

  • Mulvihill ER, LePennec J-P and Chambon P (1982): Chicken oviduct progesterone receptor: location of specific regions of high affinity binding in cloned DNA fragments of hormone-responsive genes. Cell 24: 621–632.

    Article  Google Scholar 

  • Mulvihill ER and Palmiter RD (1977): Relationship of nuclear estrogen receptor levels to induction of ovalbumin and conalbumin mRNA in chick oviduct. J Biol Chem 252: 2060–2068.

    PubMed  CAS  Google Scholar 

  • Nelson C, Albert VR, Elsholtz HP, Lu LI-W and Rosenfeld MG (1988): Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science 239: 1400–1405.

    Article  PubMed  CAS  Google Scholar 

  • Nelson C, Crenshaw EB III, Franco R, Lira SA, Albert VR, Evans RM and Rosenfeld MG (1986): Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes. Nature 322: 557–562.

    Article  PubMed  CAS  Google Scholar 

  • Notides AC, Lerner N and Hamilton DE (1981): Positive cooperativity of the estrogen receptor. Proc Natl Acad Sci USA 78: 4926–4930.

    Article  PubMed  CAS  Google Scholar 

  • Payvar F, Wränge O, Carlstedt-Duke J, Okret S, Gustafsson JA and Yamamoto KR (1981): Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc Natl Acad Sci USA 78: 6628–6632.

    Article  PubMed  CAS  Google Scholar 

  • Pfahl M (1982): Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promoter region. Cell 31: 475–482.

    Article  PubMed  CAS  Google Scholar 

  • Reeder RH and Roeder RG (1972): Ribosomal RNA synthesis in isolated nuclei. J Mol Biol 67: 433–441.

    Article  PubMed  CAS  Google Scholar 

  • Ryan R, Shupnik MA and Gorski J (1979): Effect of estrogen on preprolactin messenger ribonucleic acid sequences. Biochemistry 18: 2044–2048.

    Article  PubMed  CAS  Google Scholar 

  • Scheidereit C, Geisse S, Westphal HM and Beato M (1983): The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumour virus. Nature 304: 749–752.

    Article  PubMed  CAS  Google Scholar 

  • Schule R, Muller M, Kaltschmidt C and Renkawitz R (1988a): Many transcription factors interact synergistically with steroid receptors. Science 242: 1418–1420.

    Article  PubMed  CAS  Google Scholar 

  • Schule R, Muller M, Otsuka-Murakami H and Renkawitz R (1988b): Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature 332: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Schuster WA, Treacy MN and Martin F (1988): Tissue specific trans-acting factor interaction with proximal rat prolactin gene promoter sequences. EMBO J 7: 1721–1733.

    PubMed  CAS  Google Scholar 

  • Seo H, Refetoff S, Martino E, Vassart G and Brocas H (1979a): The differential stimulatory effect of thyroid hormone on growth hormone synthesis and estrogen on prolactin synthesis due to accumulation of specific messenger ribonucleic acids. Endocrinology 104: 1083–1090.

    Article  PubMed  CAS  Google Scholar 

  • Seo H, Refetoff S, Scherberg N, Brocas H and Vassart G (1979b): Isolation of rat prolactin messenger ribonucleic acid and synthesis of complementary deoxyribonucleic acid. Endocrinology 105: 1481–1487.

    Article  PubMed  CAS  Google Scholar 

  • Shull JD and Gorski J (1984): Estrogen stimulates prolactin gene transcription by a mechanism independent of pituitary protein synthesis. Endocrinology 114: 1550–1557.

    Article  PubMed  CAS  Google Scholar 

  • Shupnik MA, Baxter LA, French LR and Gorski J (1979): In vivo effects of estrogen on ovine pituitaries: prolactin and growth hormone biosynthesis and messenger ribonucleic acid translation. Endocrinology 104: 729–735.

    Article  PubMed  CAS  Google Scholar 

  • Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG and Swanson LW (1990): Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 4: 695–711.

    Article  PubMed  CAS  Google Scholar 

  • Stone RT, Maurer RA and Gorski J (1977): Effects of estradiol-17β on preprolactin messenger ribonucleic acid activity in the rat pituitary gland. Biochemistry 16: 4915–4921.

    Article  PubMed  CAS  Google Scholar 

  • Strahle U, Schmid W and Schutz G (1988): Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J 7: 3389–3395.

    PubMed  CAS  Google Scholar 

  • Tashjian AH Jr, Yasumura Y, Levine L, Sato GH and Parker ML (1968): Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82: 342–352.

    Article  PubMed  CAS  Google Scholar 

  • Vician L, Shupnik MA and Gorski J (1979): Effects of estrogen on primary ovine pituitary cell cultures: stimulation of prolactin secretion, synthesis and preprolactin messenger ribonucleic acid activity. Endocrinology 104: 736–743.

    Article  PubMed  CAS  Google Scholar 

  • Wang JC and Giaever GN (1988): Action at a distance along a DNA. Science 240: 300–304.

    Article  PubMed  CAS  Google Scholar 

  • Waterman ML, Adler S, Nelson C, Greene L, Evans M and Rosenfeld MG (1988): A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene. Mol Endocrinol 2: 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Willliams D and Gorski J (1972): Kinetic and equilibrium analysis of estradiol in uterus: a model of binding-site distribution in uterine cells. Proc Natl Acad Sci USA 69: 3464–3468.

    Article  Google Scholar 

  • Yamamoto K, Kasai K and Ieiri T (1975): Control of pituitary functions of synthesis and release of prolactin and growth hormone by gonadal steroids in female and male rats. Jap J Physiol 25: 645–658.

    Article  CAS  Google Scholar 

  • Yamamoto KR and Alberts BM (1974): On the specificity of the binding of the estradiol receptor protein to deoxyribonucleic acid. J Biol Chem 249: 7076–7086.

    PubMed  CAS  Google Scholar 

  • Yan G-Z and Bancroft C (1991): Mediation by calcium of thyrotropin-releasing hormone action on the prolactin promoter via transcription factor Pit-1. Mol. Endocrinology 5: 1488–1497.

    CAS  Google Scholar 

  • Yan G-Z, Pan WT and Bancroft C (1991): Thyrotropin-releasing hormone action is mediated by the POU protein Pit-1. Mol Endocrinol 5: 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J and Karin M (1990): Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein protein interaction. Cell 62: 1205–1215.

    Article  PubMed  CAS  Google Scholar 

  • Zylber EA and Penman S (1971): Products of RNA polymerases in HeLa cell nuclei. Proc Natl Acad Sci USA 68: 2861–2865.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Maurer, R.A., Day, R.N., Okimura, Y., Nowakowski, B.E. (1994). Functional Interaction of the Estrogen Receptor with the Tissue-Specific, Homeodomain Transcription Factor, PIT-1. In: Moudgil, V.K. (eds) Steroid Hormone Receptors: Basic and Clinical Aspects. Hormones in Health and Disease. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9849-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9849-7_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9851-0

  • Online ISBN: 978-1-4615-9849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics