Skip to main content

Characteristics of the Human Estrogen Receptor Protein Produced in Microbial Expression Systems

  • Chapter
Book cover Steroid Hormone Receptors: Basic and Clinical Aspects

Part of the book series: Hormones in Health and Disease ((HHD))

  • 243 Accesses

Abstract

Steroid and thyroid hormone actions are communicated via intracellular receptors which are members of a complex family of transcriptional regulatory proteins (Evans, 1988; Beato, 1989; O’Malley, 1990). When these regulatory proteins bind their ligands, they recognize DNA-response elements on target cell genes and coordinate their expression. In general, proteins in the steroid receptor superfamily are expressed as a single polypeptide containing three discrete functional domains (Green and Chambon, 1988; McDonnell et al, 1988; Conneely et al, 1988; Farrell et al, 1990; Guichon-Mantel et al, 1989 and Howard et al, 1990). The central domain consists of two zinc-binding finger motifs which interact specifically with hormone-response elements (HRE) on the target genes (Green et al, 1986; Klein-Hitpass et al, 1988; Tsai et al, 1988). Several regions adjacent to the amino-terminus of evolutionarily advanced receptors, i.e. those binding estrogens, progestins, and glucocorticoids, interact with other factors of the transcriptional process as well as with the DNA and hormone-binding domains of the receptor to facilitate transcription (Rusconi and Yamamoto, 1987; Tora et al, 1989a; Dobson et al, 1989; O’Malley, 1990). The hormone-binding domain occupies a large sequence near the carboxyl-terminus of these proteins (Miesfeld, 1989). Inactive (unliganded) receptor proteins are associated with heat shock proteins (hsp90) which dissociate upon binding of the steroid. This event results in active ligand-receptor complexes which then may associate tightly with the HRE stimulating gene transcription (Green and Chambon, 1988; Beato, 1989; Burger and Watson, 1989; Fuller, 1991; Wahli et al, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beato M (1989): Gene regulation by steroid hormones. Cell 56: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Berger FG and Watson G (1989): Androgen-regulated gene expression. Annu Rev Physiol 51: 51–65.

    Article  PubMed  CAS  Google Scholar 

  • Butt TR, Jonnalagadda S, Monia BP, Sternberg EJ, Marsh J, Stadel J, Ecker DJ and Crooke ST (1989): Ubiquitin fusion augments the yield of cloned gene products in E. coli. Proc Natl Acad Sci USA 86: 2540–2544.

    Article  PubMed  CAS  Google Scholar 

  • Butt TR, Khan MI, Marsh J, Ecker DJ and Crooke ST (1988): Ubiquitin-metallothionein fusion protein expression in yeast. J Biol Chem 263: 16, 364–16, 371.

    Google Scholar 

  • Conneely OM, Sullivan WP, Toft DO, Birnbaumer M, Cook RG, Maxwell BL, Zarucki-Schulz T, Greene GL, Schrader WT and O’Malley BW (1988): Molecular cloning of the chicken progesterone receptor. Science 233: 767–770.

    Article  Google Scholar 

  • Dobson ADW, Conneely DM, Beattie W, Maxwell BL, Mak P, Tsai M-J, Schrader WT and O’Malley BW (1989): Mutation analysis of the chicken progesterone receptor. J Biol Chem 264: 4207–4211.

    PubMed  CAS  Google Scholar 

  • Ecker DJ, Stadel JM, Butt TR, Marsh JA, Monia BP, Powers DA, Gorman JA, Clark PE, Shatzman A and Crooke ST (1989): Increasing gene expression in yeast by fusion to ubiquitin. J Biol Chem 264: 7715–7719.

    PubMed  CAS  Google Scholar 

  • Eul J, Meyer ME, Tora L, Bocquel MT, Quirin-Striker C, Chambon P and Gronemeyer H (1989): Expression of active hormone and DNA-binding domains of the chicken progesterone receptor in E. coli. EMBO J 8: 83–90.

    PubMed  CAS  Google Scholar 

  • Evans RM (1988): The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Farrell SE, Lees JA, White R and Parker MG (1990): Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962.

    Article  Google Scholar 

  • Finley D, Bartel B and Varshavsky A (1989): The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosomal biogenesis. Nature 338: 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Fisher B, Redmond C, Brown A, Wickerham DL, Wolmark N, Allegra JC, Escher G, Lippman M, Savlov E, Wittliff JL and Fisher ER et al (1983): Influence of tumor estrogen and progesterone receptor levels on the response to tamoxifen and chemotherapy in primary breast cancer. J Clin Oncol 1: 227–241.

    PubMed  CAS  Google Scholar 

  • Folk P, Dong J and Wittliff JL (1992): Simultaneous identification of estrogen progesterone receptors by HPLC using a double isotope assay. J Steroid Biochem Mol Biol 42: 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Fuller PJ (1991): The steroid receptor superfamily: mechanism of diversity. FASEB J 5: 3092–3099.

    PubMed  CAS  Google Scholar 

  • Green S and Chambon P (1988): Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P and Chambon P (1986): Human oestrogen receptor DNA sequence expression and homology to v-erb-A. Nature 320: 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Greene GL, Gilna P, Waterfield M, Baker V, Hort V and Shine J (1986): Sequence and expression of human estrogen receptor complementary DNA. Science 231: 1150–1154.

    Article  PubMed  CAS  Google Scholar 

  • Guichon-Mantel A, Loosfelt H, Lescap P, Sar S, Atger M, Perrot-Applanat M and Milgrom E (1989): Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction of monomers. Cell 57: 1147–1154.

    Article  Google Scholar 

  • Hershko A and Ciechanover A (1986): The ubiquitin pathway for the degradation of intracellular proteins. Prog Nucleic Acid Res Mol Biol 33: 19–56.

    Article  PubMed  CAS  Google Scholar 

  • Howard KJ, Holley SJ, Yamamoto KR and Distelhorst CW (1990): Mapping of the HSP90 binding region of the glucocorticoid receptor. J Biol Chem 265: 11928–11935.

    PubMed  CAS  Google Scholar 

  • Hyder SM and Wittliff JL (1987): High-performance hydrophobic interaction chromatography of a labile regulatory protein: The estrogen receptor. Biochromatogr, Vol 2, No 3: 121–130.

    CAS  Google Scholar 

  • Hyder SM and Wittliff JL (1988): High performance hydrophobic interaction chromatography as a means of identifying estrogen receptors expressing different binding domains. J Chromatogr 444: 225–237.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Hitpass L, Ryffel GU, Heitlinger E, Cato AC (1988): A 13 bp palindrome is a functional estrogen responsive element and interacts specifically with estrogen receptors. Nucleic Acids Res 16: 647–663.

    Article  PubMed  CAS  Google Scholar 

  • Lyttle CR, Damian-Matsumura P, Huul H and Butt TR (1992): Human estrogen receptor regulation in a yeast model system and studies on receptor agonists and antagonists. J Steroid Biochem Mol Biol 42: 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Mak P, McDonnell DP, Weigel NL, Schrader WT and O’Malley BW (1989): Expression of functional chicken oviduct progesterone receptors in yeast (Saccharomyces cerevisiae). J Biol Chem 264: 21613–21618.

    PubMed  CAS  Google Scholar 

  • McDonnell DP, Pike JW and O’Malley BWJ (1988): The vitamin D receptor: A primitive steroid receptor related to thyroid hormone receptor. J Steroid Biochem 29: 459–464.

    Google Scholar 

  • McDonnell DP, Pike JW, Drutz DD, Butt TR and O’Malley BW (1989): Reconstitution of the vitamin D-responsive osteocalcin transcription unit in Saccharomyces cerevisiae. Mol Cell Biol 9: 3517–3523.

    PubMed  CAS  Google Scholar 

  • McDonnell DP, Nawaz Z, Densmore C, Weigel NL, Pham TA, Clark J H and O’Malley BW (1991): High level expression of biologically active estrogen receptor in Saccharomyces cerevisiae. J Steroid Biochem Molec Biol 39: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Metzger D, White JH and Chambon P (1988): The human oestrogen receptor functions in yeast. Nature 334: 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Miesfeld RL (1989): The structure and function of steroid receptor proteins. Critical Rev Biochem Mol Biol 24: 101–117.

    Article  CAS  Google Scholar 

  • Grant R, Ho Y and Platt T (1985): Maximizing gene expression from plasmid vectors containing the λ PL promoter: Strategies for overproducing transcription termination factor. Proc Natl Acad Sci USA 82: 88–92.

    Article  PubMed  Google Scholar 

  • O’Malley B (1990): The steroid receptor superfamily: More excitement predicted for the future. Mol Endocrinol 4: 363–369.

    Article  PubMed  Google Scholar 

  • Power RF, Conneely OM, McDonnell DP, Clark JH, Butt TR, Schrader WT and O’Malley BW (1990): High level expression of a truncated chicken progesterone receptor in E. coli. J Biol Chem 265: 1419–1424.

    PubMed  CAS  Google Scholar 

  • Rechsteiner M (1987): Ubiquitin mediated pathway for intracellular proteolysis. Annu Rev Cell Biol 3: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Rusconi S and Yamomoto KR (1987): Functional dissection of the hormone and DNA binding activities of the glucocorticoid receptor. EMBO J 6: 1309–1315.

    PubMed  CAS  Google Scholar 

  • Sato N, Hyder SM, Chang L, Thais A and Wittliff JL (1986): Interaction of estrogen receptor isoforms with immobilized monoclonal antibodies. J Chromatogr 359: 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Schaupp C, Folk P, Butt T and Wittliff JL (1992): The Endocrine Society, 74th Annual Meeting, San Antonio, Texas, June 24–27, 1992.

    Google Scholar 

  • Schena M and Yamamoto KR (1988): Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science 241: 965–967.

    Article  PubMed  CAS  Google Scholar 

  • Shatzman A and Rosenberg M (1986): Efficient expression of heterologous genes in E. coli: The PAS vector system and its applications. Ann N Y Acad Sci 478: 233–248.

    Article  PubMed  CAS  Google Scholar 

  • Sluyser M and Wittliff JL (1992): Influence of estrogen receptor variants in mammary carcinomas on the prognostic reliability of the receptor assay. Mol Cell Endocrinol 85: 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I and Chambon P (1989b): The cloned human estrogen receptor contains a mutation which alters its hormone binding properties. EMBO J 8: 1981–1986.

    PubMed  CAS  Google Scholar 

  • Tora L, White J, Brou C, Tasset D, Webster N, Scheer E and Chambon P (1989a): The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59: 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Tsai M-J and O’Malley BW (1988): Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55: 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Wilkinson KD and Cooke WJ (1987): Structure of ubiquitin refined at 1.8Å resolution. J Mol Biol 194: 531–544.

    Article  PubMed  CAS  Google Scholar 

  • Wahli W and Mertinez E (1991): Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J 5: 2243–2249.

    PubMed  CAS  Google Scholar 

  • Weber PL, Brown SC and Mueller L (1987): 1H-NMR resonance assignment and secondary structure identification of human ubiquitin. Biochemistry 26: 7287–7290.

    Google Scholar 

  • Wiehle RD, Hofmann GE, Fuchs A and Wittliff JL (1984): High-performance size exclusion chromatography as a rapid method for the separation of steroid hormone receptors. J Chromatogr 307: 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Wittliff JL (1974): Specific receptors of the steroid hormones in breast cancer. Seminars in Oncol 1: 109–118.

    CAS  Google Scholar 

  • Wittliff JL (1984): Steroid hormone receptors in breast cancer. Cancer 53: 630–643.

    Article  PubMed  CAS  Google Scholar 

  • Wittliff JL (1985): Separation and characterization of isoforms of steroid hormone receptors using high performance liquid chromatography. In: Molecular Mechanisms of Steroid Hormone Action, Moudgil V K, ed. pp. 791–813, Berlin, Germany: Walter de Gruyter and Co.

    Chapter  Google Scholar 

  • Wittliff JL (1987): Steroid hormone receptors. In: Methods in Clinical Chemistry, Pesce AJ and Kaplan LA, eds. Chapter 99, pp 767–795, St. Louis, Missouri: The CV Mosby Co.

    Google Scholar 

  • Wittliff JL and Savlov ED (1975): Estrogen-binding capacity of cytoplasmic forms of the estrogen receptors in human breast cancer. In: Estrogen receptors in human breast cancer, McGuire WL, Carbone PP and Vollmer EP, eds. pp 73–91, New York: Raven Press.

    Google Scholar 

  • Wittliff JL, Allegra JC, Day TG Jr and Hyder SM (1988): Structural features and clinical significance of estrogen receptors. In: Steroid Receptors in Health and Disease, Moudgil V K, ed. pp 287–312, New York: Plenum Publishing Corp.

    Google Scholar 

  • Wittliff JL, Feldhoff PM, Fuchs A and Wiehle RD (1981): Polymorphism of estrogen receptors in human breast cancer. In: Physiopathology of Endocrine Diseases and Mechanisms of Hormone Action, Soto R, DeNicola AF and Blaquier JA, eds. pp 375–396, New York: Alan R Liss, Inc.

    Google Scholar 

  • Wittliff JL, Wiehle RD and Hyder SM (1989): HPLC as a means of characterizing the polymorphism of steroid hormone receptors. In: The Use of HPLC in Receptor Biochemistry, Kerlavage AR, ed. pp 155–199, New York: Alan R. Liss, Inc.

    Google Scholar 

  • Wittliff JL, Pasic R and Bland KI (1990): Steroid and peptide hormone receptors identified in breast tissue. In: The Breast: Comprehensive Management of Benign and Malignant Diseases, Bland K I and Copeland E M, III, eds. Chapter 43, pp 900–936, Philadelphia, PA: WB Saunders Co.

    Google Scholar 

  • Wittliff JL, Wenz LL, Dong J, Nawaz Z and Butt TR (1990): Expression and characterization of an active human estrogen receptor as a ubiquitin fusion protein from Escherichia coli. J Biol Chem 265: 22016–22022.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Wittliff, J.L., Dong, J., Schaupp, C., Folk, P., Butt, T. (1994). Characteristics of the Human Estrogen Receptor Protein Produced in Microbial Expression Systems. In: Moudgil, V.K. (eds) Steroid Hormone Receptors: Basic and Clinical Aspects. Hormones in Health and Disease. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9849-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9849-7_19

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9851-0

  • Online ISBN: 978-1-4615-9849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics