Skip to main content

Estrogen Receptor Activation by Ligand-Dependent and Ligand-Independent Pathways

  • Chapter
Steroid Hormone Receptors: Basic and Clinical Aspects

Part of the book series: Hormones in Health and Disease ((HHD))

  • 244 Accesses

Abstract

Estrogens are a class of female sex steroid hormones important for the growth and differentiation of mammary and reproductive tissues and brain. The biological activities of these hormones are mediated by the estrogen receptor (ER), an intracellular phosphoprotein which binds a comparatively small molecular weight steroidal ligand and transduces its signal to the nuclear genetic apparatus. This protein belongs to a gene superfamily of ligand-activated transcription factors whose members are distinguished by the presence of three regions of homology, named C1, C2 and C3 (Carson-Jurica et al, 1990). The region of greatest conservation, C1, is composed of a sequence motif of 66-68 amino acids proposed to form two type II zinc fingers (Evans, 1988; Carson-Jurica et al, 1990; Green and Chambon, 1991 and references therein). Each finger contains 4 invariant cysteine residues thought to coordinate a single zinc atom and together these fingers in the context of the surrounding amino acid sequence determine the specificity of receptor binding to DNA (reviewed by Freedman, 1992). The characteristic homology of this region has been exploited to allow the rapid identification of new gene superfamily members in species as diverse as sea urchin (Chan et al, 1992), Drosophila (Mlodzik et al, 1990) and man (Wang et al, 1989), and although the final size of this superfamily is presently unknown, estimates suggest it may eventually encompass as many as 50 members (O’Malley and Conneely, 1992). Of the members identified to date, there are two major subgroups: those for which a ligand has been identified such as the steroidAhyroid/vitamin receptors, and those for which a putative ligand, if any, is currently unknown (O’Malley, 1990). These latter proteins, referred to as ‘orphan’ receptors, are the subject of ongoing investigations to determine their physiological ligand and/or other factors that may regulate their transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali S, Metzger D, Jean-Marc B and Chambon P (1993): Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 12: 1153–1160.

    PubMed  CAS  Google Scholar 

  • Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai M-J and O’Malley BW (1992): Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 267: 19513–19520.

    PubMed  CAS  Google Scholar 

  • Arbuckle ND, Dauvois S and Parker MG (1992): Effects of antioestrogens on the DNA binding activity of oestrogen receptors in vitro. Nuc Acids Res 20: 3839–3844.

    Article  CAS  Google Scholar 

  • Aronica SM and Katzenellenbogen BS (1991): Progesterone receptor regulation in uterine cells: stimulation by estrogen, cyclic adenosine 3′,5′-monophosphate, and insulin-like growth factor I and suppression by antiestrogens and protein kinase inhibitors. Endocrinology 128: 2045–2052.

    Article  PubMed  CAS  Google Scholar 

  • Bagchi MK, Tsai SY, Tsai M-J and O’Malley BW (1990): Identification of a functional intermediate in receptor activation in progesterone-dependent cell free transcription. Nature 345: 547–550.

    Article  PubMed  CAS  Google Scholar 

  • Bagchi MK, Tsai SY, Tsai M-J and O’Malley BW (1992): Ligand and DNA-dependent phosphorylation of human progesterone receptor in vitro. Proc Natl Acad Sci USA 89: 2664–2668.

    Article  PubMed  CAS  Google Scholar 

  • Beck CA, Weigel NC and Edwards DP (1992): Effects of hormone and cellular modulators of protein phosphorylation on transcriptional activity, DNA binding, and phosphorylation of human progesterone receptors. Mol Endocrinol 6: 607–620.

    Article  PubMed  CAS  Google Scholar 

  • Berkers JAM, van Bergenen Henegouwen PMP and Boonstra J (1991): Three classes of epidermal growth factor receptors on HeLa cells. J Biol Chem 266: 922–927.

    PubMed  CAS  Google Scholar 

  • Berry M, Metzger D and Chambon P (1990): Role of the two activating domains of the oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen. EMBO J 9: 2811–2818.

    PubMed  CAS  Google Scholar 

  • Berthois Y, Dong XF and Martin PM (1989): Regulation of epidermal growth factor-receptor by estrogen and antiestrogen in the human breast cancer cell line MCF-7. Biochem Biophys Res Commun 159: 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Carson-Jurica MA, Schrader WT and O’Malley BW (1990): Steroid receptor family: structure and functions. Endocrine Rev 11: 201–220.

    Article  CAS  Google Scholar 

  • Cavailles V, Augereau P, Garcia M and Rochefort H (1988): Estrogens and growth factors induce the mRNA of the 52K-pro-cathepsin-D secreted by breast cancer cells. Nuc Acids Res 16: 1903–1919.

    Article  CAS  Google Scholar 

  • Chan SM, Xu N, Niemeyer CC, Bone JR and Flytzanis CN (1992): SpCOUP-TF: a sea urchin member of the steroid/thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 89: 10568–10572.

    Article  PubMed  CAS  Google Scholar 

  • Chandler VL, Maler BA and Yamamoto KR (1983): DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Chang C and Kokontis J (1988): Identification of a new member of the steroid receptor super-family by cloning and sequence analysis. Biochem Biophys Res Commun 155: 971–977.

    Article  PubMed  CAS  Google Scholar 

  • Cho H and Katzenellenbogen BS (1993): Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol Endocrinol 7: 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Clarke R, Dickson RB and Lippman ME (1991): The role of steroid hormones and growth factors in the control of normal and malignant breast. In: Nuclear Hormone Receptors, Parker, M.G., ed. London: Academic Press.

    Google Scholar 

  • Dauvois S, Danielian PS, White R and Parker MG (1992): Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci USA 89: 4037–4041.

    Article  PubMed  CAS  Google Scholar 

  • Davis IJ, Hazel TG and Lau LF (1991): Transcriptional activation by nur77, a growth factor-inducible member of the steroid hormone receptor superfamily. Mol Endocrinol 5: 854–859.

    Article  PubMed  CAS  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau Jr RT, Bates MD and Caron MG (1990): Molecular cloning and expression of the gene for a human D1 dopamine receptor. Nature 347: 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Denis M, Poellinger L, Wikstrom A-C and Gustafsson J-Å (1988): Requirement of hormone for thermal conversion of the glucocorticoid receptor to a DNA-binding state. Nature 333: 686–688.

    Article  PubMed  CAS  Google Scholar 

  • Denner LA, Schrader WT, O’Malley BW and Weigel NL (1990a): Hormonal regulation and identification of chicken progesterone receptor phosphorylation sties. J Biol Chem 265: 16548–16555.

    PubMed  CAS  Google Scholar 

  • Denner LA, Weigel NL, Maxwell BL, Schrader WT and O’Malley BW (1990b): Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250: 1740–1743.

    Article  PubMed  CAS  Google Scholar 

  • Denton RR, Koszewski NJ and Notides AC (1992): Estrogen receptor phosphorylation: hormonal dependence and consequence on specific DNA binding. J Biol Chem 267: 7263–7268.

    PubMed  CAS  Google Scholar 

  • DiAugustine RP, Petrusz P, Bell GI, Brown CF, Korach KS, McLachlan JA and Teng CT (1988): Influence of estrogens on mouse uterine epidermal growth factor precursor protein and messenger ribonucleic acid. Endocrinology 122: 2355–2363.

    Article  PubMed  CAS  Google Scholar 

  • Evans RM (1988): The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Fawell SE, Lees JA, White R, Parker MG (1990): Characterization and localization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962.

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Blecher M and Jose PA (1989): Dopamine-1-mediated stimulation of phospholipase C activity in rat renal cortical membranes. J Biol Chem 264: 8739–8745.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick SL, LaChance MP and Schultz GS (1984): Characterization of epidermal growth factor receptor and action on human breast cancer cells in culture. Cancer Res 44: 3442–3447.

    PubMed  CAS  Google Scholar 

  • Freedman LP (1992): Anatomy of the steroid receptor zinc finger region. Endocrine Rev 13: 129–145.

    CAS  Google Scholar 

  • Gibson MK, Nemmers LA, Beckman Jr WC, Davis VL, Curtis SW and Korach KS (1991): The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue. Endocrinology 129: 2000–2010.

    Article  PubMed  CAS  Google Scholar 

  • Giguère V, Yang N, Segui P and Evans RM (1988): Identification of a new class of steroid hormone receptors. Nature 331: 91–94.

    Article  PubMed  Google Scholar 

  • Green S and Chambon P (1991): The oestrogen receptor: from perception to mechanism. In Nuclear Hormone Receptors, Parker, M.G., ed. London: Academic Press.

    Google Scholar 

  • Green S, Walter P, Kumar V, Krust A, Bornert J-M, Argos P and Chambon P (1986): Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320: 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y and Shine J (1986): Sequence and expression of human estrogen receptor complementary DNA. Science 231: 1150–1154.

    Article  PubMed  CAS  Google Scholar 

  • Hazel TG, Nathans D, Lau LF (1988): A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 85: 8444–8448.

    Article  PubMed  CAS  Google Scholar 

  • Huggenvik JI, Collard MW, Kim Y-W and Sharma RP (1993): Modification of the retinoic acid signaling pathway by the catalytic subunit of protein kinase-A. Mol Endocrinol 7: 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS (1992): Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 89: 4658–4662.

    Article  PubMed  CAS  Google Scholar 

  • Jordon VC (1984): Biochemical pharmacology of antiestrogen action. Pharm Rev 36: 245–276.

    Google Scholar 

  • Jordan VC, Collins MM, Rowsby L and Prestwich G (1977): A monohyroxylated metabolite of tamoxifen with potent antiestrogenic activity. J Endocrinol 75: 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen BS and Norman MJ (1990): Multihormonal regulation of the progesterone receptor in MCF-7 human breast cancer cells: interrelationships among insulin/insulin-like growth factor-1, serum, and estrogen. Endocrinology 126: 891–898.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian JW and Caine DB (1979): Multiple receptors for dopamine. Nature 277: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU (1986): An estrogen-responsive element derived from the 5′ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46: 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Hitpass L, Tsai SY, Weigel NL, Allan GF, Riley D, Rodriguez R, Schrader WT, Tsai M-J and O’Malley BW (1990): The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex. Cell 60: 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Sakai M, Muramatsu M (1987): Molecular cloning and characterization of rat estrogen receptor cDNA. Nuc Acids Res 15: 2499–2513.

    Article  CAS  Google Scholar 

  • Krebs EG and Beavo JA (1979): Phosphorylation-dephosphorylation of enzymes. Ann Rev Biochem 48: 923–959.

    Article  PubMed  CAS  Google Scholar 

  • Krust A, Green S, Argos P, Kumar V, Walter P, Bornet J-M and Chambon P (1986): The chicken oestrogen receptor sequence: homology with v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J 5: 891–897.

    PubMed  CAS  Google Scholar 

  • Kubli-Garfias C and Whalen RE (1977): Induction of lordosis behavior in female rats by intravenous administration of progestins. Horm Behav 9: 380–386.

    Article  PubMed  CAS  Google Scholar 

  • Kumar V and Chambon P (1988): The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55: 145–156.

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Green S, Stack G, Berry M, Jin J-R and Chambon P (1987): Functional domains of the human estrogen receptor. Cell 51: 941–951.

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Green S, Staub A and Chambon P (1986): Localization of the estradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 5: 2231–2236.

    PubMed  CAS  Google Scholar 

  • Liu Y and Teng CT (1992): Estrogen response module of the mouse lactoferrin gene contains overlapping chicken ovalbumin upstream promoter transcription factor and estrogen receptor-binding elements. Mol Endocrinol 6: 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Lydon JP, Power RF and Conneely OM (1992): Differential modes of activation define orphan subclasses within the steroid/thyroid receptor superfamily. Gene Express 2: 273–283.

    CAS  Google Scholar 

  • Mani SK, Allen JMC, Clark JH and O’Malley BW (1993): Convergent molecular pathways for progesterone receptor activation in the control of sexual behavior in female rats. 75th Annual meeting of the Endocrine Society, Abstract #1559.

    Google Scholar 

  • Maroder M, Farina AR, Vacca A, Felli MP, Meco D, Screpanti I, Frati L and Gulino A (1993): Cell-specific bifunctional role of jun oncogene family members on glucocorticoid receptor-dependent transcription. Mol Endocrinol 7: 570–584.

    Article  PubMed  CAS  Google Scholar 

  • Mlodzik M, Hiromi Y, Weber U, Goodman CS and Rubin GM (1990): The Drosophila seven-up gene, a member of the steroid receptor superfamily, controls photoreceptor cell fates. Cell 60: 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Mukku VR and Stancel GM (1985): Regulation of epidermal growth factor receptor by estrogen. J Biol Chem 260: 9820–9824.

    PubMed  CAS  Google Scholar 

  • Mukku VR and Stancel GM (1985): Receptors of epidermal growth factor in the rat uterus. Endocrinology 117: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Munck A, Wira C, Young DA, Mosher KM, Hallahan C and Bell PA (1972): Glucocorticoid-receptor complexes and the earliest steps in the action of glucocorticoids on thymus cells. J Steroid Biochem 3: 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Murphy LJ, Murphy LC and Friesen HG (1987): Estrogen induces insulin-like growth factor-1 expression in the rat uterus. Mol Endocrinol 1: 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Nelson KG, Takahashi T, Bossert NL, Walmer DK and McLachlan JA (1991): Epidermal growth factor replaces estrogen in the stimulation of female genital-tract growth and differentiation. Proc Natl Acad Sci USA 88: 21–25

    Article  PubMed  CAS  Google Scholar 

  • Nelson KG, Takahashi T, Lee DC, Luetteke NC, Bossert NL, Ross K, Eitzman BE and McLachlan JA (1992): Transforming growth factor-α is a potential mediator of estrogen action in the mouse uterus. Endocrinology 131: 1657–1664.

    Article  PubMed  CAS  Google Scholar 

  • Nunez A-M, Berry M, Imier J-L and Chambon P (1989): The 5′ flanking region of the pS2 gene contains a complex enhancer region responsive to oestrogens, epidermal growth factor, a tumor promoter (TPA), the c-Ha-ras oncoprotein and the c-jun protein. EMBO J 8: 823–829.

    PubMed  CAS  Google Scholar 

  • O’Malley BW (1988): Editorial: did eucaryotic steroid receptors evolve from intracrine gene regulators? Endocrinology 125: 1119–1120

    Article  Google Scholar 

  • O’Malley BW (1990): The steroid receptor superfamily: more excitement predicted for the future. Mol Endocrinol 4: 363–369.

    Article  PubMed  Google Scholar 

  • O’Malley BW and Conneely OM (1992): Orphan receptors: in search of a unifying hypothesis for activation. Mol Endocrinol 6: 1359–1361.

    Article  PubMed  Google Scholar 

  • Ortf E, Bodwell JE and Munck A (1992): Phosphorylation of steroid hormone receptors. Endo Rev 13: 105–128.

    Google Scholar 

  • Ortf E, Mendel DB, Smith LI and Munck A (1989): Agonist-dependent phosphorylation and nuclear dephosphorylation of glucocorticoid receptors in intact cells. J Biol Chem 264: 9728–9731.

    Google Scholar 

  • Pakdel F, Le Guellec C, Vaillant C, Le Roux MG and Valtaire Y (1989): Identification and estrogen induction of two estrogen receptors (ER) messenger ribonucleic acids in the rainbow trout liver: sequence homology with other ERs. Mol Endocrinol 3: 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Payvar F, Wränge Ö, Carlstedt-Duke J, Okret S, Gustafsson J-Å and Yamamoto KR (1981): Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc Natl Acad Sci USA 78: 6628–6632.

    Article  PubMed  CAS  Google Scholar 

  • Poletti A and Weigel NL (1993): Identification of a hormone-dependent phosphorylation site adjacent to the DNA-binding domain of the chicken progesterone receptor. Mol Endocrinol 7: 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Power RF, Lydon JP, Conneely OM and O’Malley BW (1991a): Dopamine activation of an orphan of the steroid receptor superfamily. Science 252: 1546–1548.

    Article  PubMed  CAS  Google Scholar 

  • Power RF, Mani SK, Codina J, Conneely OM and O’Malley BW (1991b): Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254: 1636–1639.

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB (1987): Transformation of glucocorticoid and progesterone receptors to the DNA-binding state. J Cell Biochem 35: 51–68.

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan PN, Umesono K and Evans RM (1992): Modulation of glucocorticoid receptor function by protein kinase A. Mol Endocrinol 6: 1451–1457.

    Article  PubMed  CAS  Google Scholar 

  • Reese JC and Katzenellenbogen BS (1991): Differential DNA-binding abilities of estrogen receptor occupied with two classes of antiestrogens: studies using human estrogen receptor overexpressed in mammalian cells. Nucleic Acids Res 19: 6595–6602.

    Article  PubMed  CAS  Google Scholar 

  • Reese JC and Katzenellenbogen BS (1992): Examination of the DNA-binding ability of estrogen receptor in whole cells: implications for hormone-independent transactivation and the actions of antiestrogens. Mol Cell Biol 12: 4531–4538.

    PubMed  CAS  Google Scholar 

  • Seed B and Sheen J-Y (1988): A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67: 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Simerly RB, Chang C, Muramatsu M and Swanson IW (1990): Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294: 76–95.

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Conneely OM and O’Malley BW (1993): Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone. Proc Natl Acad Sci USA 90: 6120–6124

    Article  PubMed  CAS  Google Scholar 

  • Sumida C, Lecerf F and Pasqualini JR (1988): Control of progesterone receptors in fetal uterine cells in culture: effects of estradiol, progestins, antiestrogens, and growth factors. Endocrinology 122: 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Sumida C and Pasqualini JR (1989): Antiestrogens antagonize the stimulatory effect of epidermal growth factor on the induction of progesterone receptor in fetal uterine cells in culture. Endocrinology 124: 591–597.

    Article  PubMed  CAS  Google Scholar 

  • Sumida C and Pasqualini JR (1990): Stimulation of progesterone receptors by phorbol ester and cyclic AMP in fetal uterine cells in culture. Mol Cell Endocrinol 69: 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Tora L, Mullick A, Metzger D, Ponglikitmongkol M, Park I and Chambon P (1989a): The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EM BO J 8: 1981–1986.

    CAS  Google Scholar 

  • Tora L, White J, Brou C, Tasset D, Webster N, Scheer E and Chambon P (1989b): The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59: 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Carlstedt-Duke J, Weigel NL, Dahlman K, Gustafsson J-Å, Tsai M-J and O’Malley BW (1988): Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55: 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Vacca A, Screpanti I, Maroder M, Petrangeli E, Frati L and Guilino A (1989): Tumor-promoting phorbol ester and ras oncogene expression inhibit the glucocorticoid-dependent transcription from the mouse mammary tumor virus long terminal repeat. Mol Endocrinol 3: 1659–1665.

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE (1990): Novel pure antiestrogens: mode of action and therapeutic prospects. Ann NY Acad Sci 595: 348–356.

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE and Bowler J (1988): Novel antioestrogens without partial agonist activity. J Steroid Biochem 31: 645–653.

    Article  PubMed  CAS  Google Scholar 

  • Wang L-H, Tsai SY, Cook RG, Beattie WG, Tsai M-J and O’Malley BW (1989): COUP transcription factor is a member of the steroid receptor superfamily. Nature 340: 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Washburn T, Hocutt A, Brautigen DL and Korach KS (1991): Uterine estrogen receptor in vivo: phosphorylation of nuclear specific forms on serine residues. Mol Endocrinol 5: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Webster NJG, Green S, Jin JR and Chambon P (1988): The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 54: 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Weigel NL, Carter TH, Schrader WT and O’Malley BW (1992): Chicken progesterone receptor is phosphorylated by a DNA-dependent protein kinase during in vitro transcription assays. Mol Endocrinol 6: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Weiler IJ, Lew D and Shapiro DJ (1987): The Xenopus laevis estrogen receptor: sequence homology with human and avian receptors and identification of multiple estrogen receptor messenger ribonucleic acids. Mol Endocrinol 1: 355–362.

    Article  PubMed  CAS  Google Scholar 

  • White R, Lees JA, Needham M, Ham J and Parker M (1987): Structural organization and expression of the mouse estrogen receptor. Mol Endocrinol 1: 735–744.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Smith, C.L., Conneely, O.M., O’Malley, B.W. (1994). Estrogen Receptor Activation by Ligand-Dependent and Ligand-Independent Pathways. In: Moudgil, V.K. (eds) Steroid Hormone Receptors: Basic and Clinical Aspects. Hormones in Health and Disease. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9849-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9849-7_13

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9851-0

  • Online ISBN: 978-1-4615-9849-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics