Skip to main content

Functional Pharmacology of Basal Forebrain Dopamine

  • Chapter

Abstract

Several regions within the basal forebrain are known to be terminal sites for ascending fibers originating within the dopaminergic midbrain. Of concern in this chapter is a region only recently considered dopaminoceptive: the infracommis-sural extension of the external segment of the dorsal globus pallidus, i.e., the ventral pallidum (VP) and its caudal extension, the sublenticular substantia innominata (SI). The literature establishing dopamine (DA) as a neurotransmitter within the VP/SI has been overviewed elsewhere (Napier et al., 199la) and only a brief highlight will be discussed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aston-Jones G, Shaver R, Dinan TG (1985): Nucleus basalis neurons exhibit axonal branching with decreased impulse conduction velocity in rat cerebrocortex. Brain Res 325:271–285

    Article  Google Scholar 

  • Austin MC, Kalivas PW (1990): Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum. J Pharmacol Exp Therap 252:1370–1377

    Google Scholar 

  • Austin MC, Kalivas PW (1991): Dopaminergic involvement in locomotion elicited from the ventral pallidum/substantia innominata. Brain Res 542:123–131

    Article  Google Scholar 

  • Baud P, Mayo W, LeMoal M, Simon H (1988): Locomotor hyperactivity in the rat after infusion of muscimol and [D-Ala2]Met-enkephalin into the nucleus basalis magnocel-lularis. Possible interaction with cortical cholinergic projections. Brain Res 452:203–211

    Article  Google Scholar 

  • Beckstead RM (1988): Association of dopamine D1 and D2 receptors with specific cellular elements in the basal ganglia of the cat: The uneven topography of dopamine receptors in the striatum is determined by intrinsic striatal cells, not nigrostriatal axons. Neuroscience 27:851–863

    Article  Google Scholar 

  • Besson M-J, Graybiel AM, Nastuk MA (1988): [3H]SCH 23390 binding to Dl dopamine receptors in the basal ganglia of the cat and primate: Delineation of striosomal compartments and pallidal and nigral subdivisions. Neuroscience 26:101–119

    Article  Google Scholar 

  • Camps M, Kelly PH, Palacios JM (1989): Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species. J Neural Transm 80:105–127

    Article  Google Scholar 

  • Chrobak JJ, An D, Napier TC (1989): Vehicle infusion into the basal forebrain produces task-specific cognitive deficits in the rat. Soc Neurosci Abstr 15:1173

    Google Scholar 

  • Chrobak JJ, Napier TC, Hanin I, Walsh TJ (1991): The pharmacology of basal forebrain involvement in cognition. In: The Basal Forebrain: Anatomy to Function. Advances in Experimental Medicine and Biology, Vol 295, Napier TC, Kalivas PW, Hanin I, eds. New York: Plenum Press, pp 383–398

    Google Scholar 

  • Contreras PC, Quirion R, Gehlert DR, Contreras ML, O’Donohue TL (1987): Autoradiographic distribution of non-dopaminergic binding sites labeled by [3H]haloperidol in rat brain. Neurosci Lett 75:133–140

    Article  Google Scholar 

  • Cortes R, Gueye B, Pazos A, Probst A, Palacios JM (1989): Dopamine receptors in human brain: Autoradiographic distribution of Dl sites. Neuroscience 23:263–273

    Article  Google Scholar 

  • Dawson TM, Barone P, Sidhu A, Wamsley JK, Chase TN (1986): Quantitative autoradiographic localization of D-1 dopamine receptors in the rat brain: Use of the iodinated ligand [125I]SCH23390. Neurosci Lett 68:261–266

    Article  Google Scholar 

  • DeLong MR (1971): Activity of pallidal neurons during movement. J Neurophysiol 34:414–427

    Google Scholar 

  • Deutch AY, Goldstein M, Baldino F, Roth RH (1988): Telencephalic projections of the A8 dopamine cell group. In: The Mesocorticolimbic Dopamine System, Annals of the New York Academy of Sciences, Vol. 537, Kalivas PW, Nemeroff CB, eds. New York: The New York Academy of Sciences, pp 27–49

    Google Scholar 

  • Fallon JH, Moore RY (1978): Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580

    Article  Google Scholar 

  • Gehlert DR, Wamsley JK (1985): Dopamine receptors in the rat brain: Quantitative autoradiographic localization using [3H]sulpiride. Neurochem Int 7:717–723

    Article  Google Scholar 

  • Geula C, Slevin JT (1989): Substantia nigra 6-hydroxydopamine lesions alter dopaminergic synaptic markers in the nucleus basalis magnocellularis and striatum of rats. Synapse 4:248–253

    Article  Google Scholar 

  • Grove EA (1988): Neural associations of the substantia innominata in the rat: Afferent connections. J Comp Neurol 277:315–346

    Article  Google Scholar 

  • Haring JH, Wang RY (1986): The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Res 366:152–158

    Article  Google Scholar 

  • Hoffman DC, West TEG, Wise RA (1991): Ventral pallidal microinjection of receptor-selective opioid agonists produce differential effects on circling and locomotor activity in rats. Brain Res 550:205–212

    Article  Google Scholar 

  • Hubner CB, Koob GF (1990): The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res 508:20–29

    Article  Google Scholar 

  • Hurlbut BJ, Lubar JF, Switzer R, Dougherty J, Eisenstadt ML (1987): Basal forebrain infusion of HC-3 in rats: Maze learning deficits and neuropathology. Physiol Behav 39:381–393

    Article  Google Scholar 

  • Huston JP, Kiefer S, Buscher W, Monoz C (1987): Lateralized functional relationship between the preoptic area and lateral hypothalamic reinforcement. Brain Res 436:1–8

    Article  Google Scholar 

  • Jones BE, Cuello AC (1989): Afferents to the basal forebrain cholinergic cell area from pontomesencephalic-catecholamine, serotonin, and acetylcholine-neurons. Neuroscience 31:37–61

    Article  Google Scholar 

  • Jones DA, Mogenson GJ (1980): Nucleus accumbens to globus pallidus GABA projection subserving ambulatory activity. Am J Physiol 238.R65–R69

    Google Scholar 

  • Lamour Y, Dutar P, Rascol O, Jobert A (1986): Basal forebrain neurons projecting to the rat frontoparietal cortex: Electrophysiological and pharmacological properties. Brain Res 362:122–131

    Article  Google Scholar 

  • Linseman MA (1974): Inhibitory unit activity of the ventral forebrain during both appetitive and aversive Pavlovian conditioning. Brain Res 80:146–151

    Article  Google Scholar 

  • Martinez-Murillo R, Semenenko F, Cuello AC (1988): The origin of tyrosine hydroxylase-immunoreactive fibers in the regions of the nucleus basalis magnocellularis of the rat. Brain Res 451:227–236.

    Article  Google Scholar 

  • Maslowski RJ, Napier TC (1991a): Effects of D1 and D2 antagonists on apomorphine-induced responses of ventral pallidal neurons. Neuroreport 2:451–454

    Article  Google Scholar 

  • Maslowski RJ, Napier TC (1991b) D1 and D2 dopamine receptor agonists induce opposite changes in the firing rate of ventral pallidum neurons. Eur J Pharm 200:103–112

    Article  Google Scholar 

  • McGeer PL, McGeer EG, Kimura H, Peng J-F (1986): Cholinergic neurons and cholinergic projections in the mammalian CNS. In: Dynamics of Cholinergic Function. Advances in Behavioral Biology, Vol 30, Hanin I, ed. New York: Plenum Press, pp 11–21

    Google Scholar 

  • Mogenson GR, Nielsen MA (1983): Evidence that an accumbens to subpallidal GABAergic projection contributes to locomotor activity. Brain Res Bul 11:309–314

    Article  Google Scholar 

  • Mogenson GJ, Yang CR (1991): The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. In: The Basal Forebrain: Anatomy to Function. Advances in Experimental Medicine and Biology, Vol. 295, Napier TC, Kalivas PW, Hanin I, eds. New York: Plenum Publishing, pp 267–290

    Google Scholar 

  • Mogenson GR, Swanson LW, Wu M (1985): Evidence that projections from substantia innominata to zona incerta and mesencephalic locomotor region contribute to locomotor activity. Brain Res 334:65–76

    Article  Google Scholar 

  • Mora F, Rolls ET, Burton MJ (1976): Modulation during learning of the responses of neurons in the lateral hypothalamus to the sight of food. Exp Neurol 53:508–519

    Article  Google Scholar 

  • Murray CL, Fibiger HC (1985): Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine. Neuroscience 14:1025–1032

    Article  Google Scholar 

  • Napier TC (1992): Contribution of the amygdala and nucleus accumbens to ventral pallidal responses to dopamine agonists. Synapse 10:110–119

    Article  Google Scholar 

  • Napier TC, Chrobak JJ (1992): Evaluations of ventral pallidal dopamine receptor activation in behaving rats. Neuroreport 3: in press

    Google Scholar 

  • Napier TC, Marx K (1987): Enkephalin unilaterally microinjected into the ventral pallidum/nucleus basalis induces circling. Soc Neurosci Abstr 13:445

    Google Scholar 

  • Napier TC, Potter PP (1989): Dopamine in the rat ventral pallidum/substantia innominata: Biochemical and electrophysiological studies. Neuropharmacology 28:757–760

    Article  Google Scholar 

  • Napier TC, An D, Austin MC, Kalivas PW (1988): Opiates microinjected into the ventral pallidum/substantia innominata (VP/SI) produce locomotor responses that involve dopaminergic systems. Soc Neurosci Abstr 14:293

    Google Scholar 

  • Napier TC, Muench MB, Maslowski RJ, Battaglia, G (1991a): Is dopamine a neurotrans-mitter in the ventral pallidum/substantia innominata? In: The Basal Forebrain: Anatomy to Function. Advances in Experimental Medicine and Biology, Vol 295, Napier TC, Kalivas PW, Hanin I, eds. New York: Plenum Press, pp 183–196

    Google Scholar 

  • Napier TC, Simson PE, Givens BS (1991b): Dopamine electrophysiology of ventral pallidum/substantia innominata neurons: Comparison with the dorsal globus pallidus. J Pharmacol Exp Therap 258:249–262

    Google Scholar 

  • Pirch JH (1977a): Effects of amphetamine and chlorpromazine on brain slow potentials in the rat. Pharmacol Res Commun 9:669–674

    Article  Google Scholar 

  • Pirch JH (1977b): Amphetamine effects on brain slow potentials associated with discrimination in the rat. Pharmac Biochem Behav 6:697–700

    Article  Google Scholar 

  • Pirch JH (1980): Effects of dextroamphetamine on event-related potentials in rat cortex during a reaction time task. Neuropharmacology 19:365–370

    Article  Google Scholar 

  • Pirch JH, Corbus MJ (1983): Haloperidol antagonism of amphetamine-induced effects on event-related slow potentials from rat cortex. Int J Neurosci 18:137–142

    Article  Google Scholar 

  • Pirch JH, Corbus MJ, Napier TC (1981a): Auditory cue preceding intracranial stimulation induces event-related potential in rat frontal cortex: Alterations by amphetamine. Brain Res Bull 7:799–804

    Article  Google Scholar 

  • Pirch JH, Napier TC, Corbus MJ (1981b): Brain stimulation as a cue for event-related potentials in rat cortex: Amphetamine effects. Int J Neurosci 15:217–222

    Article  Google Scholar 

  • Pirch JH, Corbus MJ, Rigdon GC, Lyness WH (1986): Generation of cortical event-related slow potentials in the rat involves nucleus basalis cholinergic innervation. Electroen-cephal Clin Neurophysiol 63:464–475

    Article  Google Scholar 

  • Rebec GV, Bashore TR, Zimmerman KS, Alloway KS (1979): “Classical” and “atypical” antipsychotic drugs: Differential antagonism of amphetamine- and apomorphine-induced alterations of spontaneous neuronal activity in the neostriatum and nucleus accumbens. Pharmacol Biochem Behav 11:529–538

    Article  Google Scholar 

  • Reiner PB, Semba K, Fibiger HC, McGeer EG (1987): Physiological evidence for subpopulations of cortically projecting basal forebrain neurons in the anesthetized rat. Neuroscience 20:629–636

    Article  Google Scholar 

  • Richardson RT, DeLong MR (1986): Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res 399:364–368

    Article  Google Scholar 

  • Richfield EK, Penney JB, Young AB (1989): Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30:767–777

    Article  Google Scholar 

  • Robinson SE, Hambrecht KL, Lyeth BG (1988): Basal forebrain carbachol injection reduces cortical acetylcholine turnover and disrupts memory. Brain Res 445:160–164

    Article  Google Scholar 

  • Rolls ET, Sanghera MK, Roper-Hall A (1979): The latency of activation of neurones in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res 164:12–135

    Article  Google Scholar 

  • Rolls ET, Burton MJ, Mora F (1980): Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res 194:339–357

    Article  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1985): The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242:1–27

    Article  Google Scholar 

  • Semba K, Reiner PB, McGeer EG, Fibiger HC (1988): Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J Comp Neurol 267:433–453

    Article  Google Scholar 

  • Shreve PE, Uretsky NJ (1988): Effect of GABAergic transmission in the subpallidal region on the hypermotility response to the administration of excitatory amino acids and Picrotoxin into the nucleus accumbens. Neuropharmacology 27:1271–1277

    Article  Google Scholar 

  • Shreve PE, Uretsky NJ (1991): GABA and glutamate interact in the substantia innominata/ lateral preoptic area to modulate locomotor activity. Pharmacol Biochem Behav 38:385–388

    Article  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1979): Dopamine auto- and postsynaptic receptors: Electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82

    Article  Google Scholar 

  • Swerdlow NR, Koob GF (1987): Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: Effects on locomotor activity mediated by nucleus accumbens-ventral pallidal circuitry. Brain Res 412:233–243

    Article  Google Scholar 

  • Voorn P, Jorritsma-Byham B, Van Dijk C, Buijs RM (1986): The dopaminergic innervation of the ventral striatum in the rat: A light- and electron-microscopical study with antibodies against dopamine. J Comp Neurol 251:84–99

    Article  Google Scholar 

  • Will BE, Toniolo G, Brailowski S (1988): Unilateral infusion of GABA and saline into the nucleus basalis of rats: 1. Effects on motor function and brain morphology. Behav Brain Res 27:123–129

    Article  Google Scholar 

  • Wilson FAW, Rolls ET (1990): Neuronal responses related to reinforcement in the primate basal forebrain. Brain Res 509:213–231

    Article  Google Scholar 

  • Wise RA (1980): The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends Neurosci 3:91–94

    Article  Google Scholar 

  • Ueki A, Miyoshi K (1989): Effects of cholinergic drugs on learning impairment in ventral globus pallidus-lesioned rats. J Neurol Sci 90:1–21

    Article  Google Scholar 

  • Zaborszky L (1989): Afferent connections of the forebrain cholinergic projection neurons, with special reference to monoaminergic and peptidergic fibers. In: Central Cholinergic Synaptic Transmission. Frotscher M, Misgeld U, eds. Basel, Switzerland: Birkhäuser Verlag, pp 12–32

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Napier, T.C. (1992). Functional Pharmacology of Basal Forebrain Dopamine. In: Levin, E.D., Decker, M.W., Butcher, L.L. (eds) Neurotransmitter Interactions and Cognitive Function. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9843-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9843-5_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9845-9

  • Online ISBN: 978-1-4615-9843-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics