Skip to main content

Intraseptal GABAergic Infusions Disrupt Memory in the Rat: Method and Mechanisms

  • Chapter
Neurotransmitter Interactions and Cognitive Function

Abstract

The septum serves as an important focus for coordinating hippocampal neural activity (Petsche et al., 1962). Manipulations within the septum alter hippocampal activity and disrupt the performance of behavioral tasks dependent on the functional integrity of this structure. The present chapter focuses on the effects of GABAergic manipulations within the septum on the rat’s performance of radial maze tasks (Fig. 1). We have observed that posttraining intraseptal infusion of the GABA agonist muscimol and the GABA antagonist bicuculline (BIC) can induce acute amnestic deficits in the rat’s performance of a delayed non-match-to-sample (DNMTS) radial arm maze (RAM) task (Chrobak et al., 1989a; Chrobak and Napiter, 1991, 1992). These findings suggest that modulation of septal activity can disrupt memory-consolidation processes. Such findings present the challenge of identifying underlying neural events disrupted by these manipulations and determining their relationship to the observed amnestic deficits. We speculate that pretraining intraseptal treatments may alter memory processes by altering neural events operative during hippocampal theta activity, while posttraining intraseptal treatments may modify memory-consolidation processes operative during the hippocampal sharp wave (SPW) state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen CN, Crawford IL (1984): GABAergic agents in the medial septal nucleus affect hippocampal theta rhythm and acetylcholine utilization. Brain Res 322:261–267

    Article  Google Scholar 

  • Beatty WW, Rush J (1983): Retention deficit after d-amphetamine treatment: Memory defect or performance change? Behav Neural Biol 37:265–275

    Article  Google Scholar 

  • Becker JT, Walker JA, Olton DS (1980): Neuroanatomical bases of spatial memory. Brain Res 200:307–320

    Article  Google Scholar 

  • Blaker WD, Peruzzi G, Costa E (1984): Behavioral and neurochemical differentiation of specific projections in the septal-hippocampal cholinergic pathway of the rat. Proc Natl Acad Sci USA 81:1880–1882

    Article  Google Scholar 

  • Bland B (1986): The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol 26:1–54

    Article  Google Scholar 

  • Bostock E, Gallagher M, King R (1988): Effects of opioid microinjections into the medial septal area on spatial memory in rats. Behav Neurosci 102:643–650

    Article  Google Scholar 

  • Brioni JD, Decker MW, Gamboa LP, Izquierdo I, McGaugh JL (1990): Muscimol injections in the medial septum impair spatial learning. Brain Res 522:227–234

    Article  Google Scholar 

  • Buzsaki G (1986): Generation of hippocampal EEG patterns. In: The Hippocampus, Isaacson R, Pribram KH, eds. New York: Plenum Press.

    Google Scholar 

  • Buzsaki G (1989): A two-stage model of memory trace formation: A role for “noisy” brain states. Neuroscience 31:551–570

    Article  Google Scholar 

  • Buzsaki G, Haas H, Anderson EG (1987): Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Res 435:331–333

    Article  Google Scholar 

  • Buzsaki G, Pnomareff G, Bayardo F, Ruiz R, Gage FH (1989): Neuronal activity in the subcortically denervated hippocampus: A chronic model for epilepsy. Neuroscience 28:527–538

    Article  Google Scholar 

  • Buzsaki G, Hsu M, Slamka C, Gage FH, Horvath Z (1991): Emergence and propagation of interictal spikes in the subcortically denervated hippocampus. Hippocampus 1:163–180

    Article  Google Scholar 

  • Chrobak JJ, Napier TC (1989): Vehicle infusions into the basal forebrain produces task-specific cognitive deficits in the rat. Soc Neurosci Abstr 15:1173

    Google Scholar 

  • Chrobak JJ, Napier TC (1991): Intraseptal administration of bicuculline produces working memory impairments in the rat. Behav Neural Biol 55:247–254

    Article  Google Scholar 

  • Chrobak JJ, Napier TC (1992): Antagonism of GABAergic transmission within the septum disrupts working/episodic memory in the rat. Neuroscience 47:833–841

    Article  Google Scholar 

  • Chrobak JJ, Walsh TJ (1991): Dose- and delay-dependent working/episodic memory impairments following intraventricular administration of ethylcholine aziridinium ion (AF64A). Behav Neural Biol 56:200–212

    Article  Google Scholar 

  • Chrobak JJ, Stackman RR, Walsh TJ (1989a): Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat. Behav Neural Biol 52:357–369

    Article  Google Scholar 

  • Chrobak JJ, Spates MJ, Stackman RW, Walsh TJ (1989b): Hemicholinium-3 prevents the working memory impairments and the cholinergic hypofunction induced by ethylcholine aziridinium ion (AF64A). Brain Res 504:269–275

    Article  Google Scholar 

  • Chrobak JJ, Napier TC, Hanin I, Walsh TJ (1991): The pharmacology of basal forebrain involvement in cognition. In: Basal Forebrain: Anatomy to Function: Advances in Experimental Medicine and Biology, Volume 295, Napier TC, Kalivas P, Hanin I, eds. New York: Plenum Press, pp 383–398

    Google Scholar 

  • Costa E, Panula P, Thompson HK, Cheney DL (1983): The transynaptic regulation of the septal-hippocampal cholinergic neurons. Life Sci 32:165–179

    Article  Google Scholar 

  • Davies P, Maloney AJF (1976): Selective loss of central cholinergic neurons in Alzheimer’s Disease. Lancet 2:1403

    Article  Google Scholar 

  • Decker M, Pelleymounter MA, Gallagher M (1988): Effects of training on a spatial memory task on high affinity choline uptake in hippocampus and cortex in young adult and aged rats. J Neurosci 8:90–99

    Google Scholar 

  • Dudar JD, Whishaw IQ, Szerb JC (1979): Release of acetylcholine from the hippocampus of freely moving rats during memory stimulation and running. Neuropharmacology 18:673–678

    Article  Google Scholar 

  • Durkin T, Koenig J (1991): Septal GABAergic interneurons and the transynaptic control of basal activity and memory test-induce activation of septo-hippocampal cholinergic neurons in mice. Soc Neurosci Abstr 17:138

    Google Scholar 

  • Freund TF, Antal M (1988): GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173

    Article  Google Scholar 

  • Galey D, Toumane A, Durkin T, Jaffard R (1989): In vivo modulation of septo-hippocampal cholinergic activity in mice: Relationship with spatial reference and working memory performance. Behav Brain Res 32:163–172

    Article  Google Scholar 

  • Gallagher M, Pelleymounter MA (1988): An age-related spatial learning deficit: Choline uptake distinguishes “impaired” and “unimpaired” rats. Neurobiol Aging 9:363–369

    Article  Google Scholar 

  • Givens BS, Olton DS (1990): Cholinergic and GABAergic modulation of medial septal area: Effect on working memory. Behav Neurosci 104:849–855

    Article  Google Scholar 

  • Gold PE (1984): Memory modulation: Roles of peripheral catecholamines. In: The Neuropsychology of Memory, Squire L, Butters N, eds. New York: Guilford Press

    Google Scholar 

  • Gold PE, McGaugh JL (1975): A single-trace, two-process view of memory storage processes. In: Short-Term memory, Deutsch D, Deutsch JA, eds. New York: Academic Press

    Google Scholar 

  • Hagan JJ, Morris RGM (1988): The cholinergic hypothesis of memory: A review of animal experiments. In: Handbook of Psychopharmacology, Vol 20, Psychopharmacology of the Aging Nervous System, Iverson LL, Iverson SD, Snyder SH, eds. New York: Plenum Press

    Google Scholar 

  • Hebb DO (1949): The Organization of Behavior New York: John Wiley & Sons

    Google Scholar 

  • Henke H, Lang W (1983): Cholinergic enzymes in neocortex, hippocampus and basal forebrain of non-neurological and senile dementia of alzheimer-type patients. Brain Res 267:281–291

    Article  Google Scholar 

  • Jakab RL, Leranth C (1990): Catecholaminergic, GABAergic, and hippocamposeptal innervation of GABAergic somatospiny neurons in the rat lateral septal area. J Comp Neurol 302:305–321

    Article  Google Scholar 

  • Larson J, Lynch G (1986): Induction of synaptic potentiation in hippocampus by pattern stimulation involves two events. Science 232:985–988

    Article  Google Scholar 

  • McGaugh JL (1989): Dissociating learning and performance: Drug and hormone enhancement of memory storage. Brain Res Bull 23:339–345

    Article  Google Scholar 

  • McLennan H, Miller JJ (1974): 7-aminobutyric acid and inhibition in the septal nuclei of the rat. J Physiol 237:625–633

    Google Scholar 

  • Mitchell SJ, Rawlins JNP, Steward O, Olton DS (1982): Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 2:292–302

    Google Scholar 

  • Mizumori SJY, Perez GM, Alvarado MC, Barnes CA, McNaughton BL (1990): Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res 528:12–20

    Article  Google Scholar 

  • Olton DS (1986): Hippocampal function and memory for temporal context. In: The Hippocampus, Vol 4 Isaacson R, Pribram K, eds. New York: Plenum Press

    Google Scholar 

  • Petsche H, Stumpf C, Gogolak G (1962): The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus: I. The control of hippocampus arousal activity by the septum cells. EEG Clin Neurophysiol 14:202–211

    Article  Google Scholar 

  • Raisman G (1966): The connections of the septum. Brain 9:317–348

    Article  Google Scholar 

  • Rolls ET (1991): Functions of the primate hippocampus in spatial and nonspatial memory. Hippocampus 1:258–261

    Article  Google Scholar 

  • Rylett RJ, Ball MJ, Colhoun EH (1983): Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 289:169–175

    Article  Google Scholar 

  • Saper CB (1987): Diffuse cortical projection systems: Anatomical organization and role in cortical function. In: Handbook of Physiology, Section 1, The Nervous System, Volume 5, Part 1, Mountcastle VB, Plum F, Geiger SR, eds. Bethesda, MD: American Physiology Society

    Google Scholar 

  • Stackman R, Walsh TJ (1992): Chlordiazepoxide-induced working memory impairment: Site specificity and antagonism with R015,1788. Behav Neural Biol, 57:233–243

    Article  Google Scholar 

  • Staubli U, Huston JP (1980): Facilitation of learning by post-trial injection of substance P into the medial septal nucleus. Behav Brain Res 1:245–255

    Article  Google Scholar 

  • Stewart M, Fox SE (1989): Two populations of rhythmically bursting neurons in rat medial septum are revealed by atropine. J Neurophysiol 61:982–993

    Google Scholar 

  • Swanson LW, Cowan WM (1979): The connections of the septal region in the rat. J Comp Neurol 186:621–656

    Article  Google Scholar 

  • Vinogradova OS, Brazhnik ES, Karanov AM, Zhadina SD (1980): Neuronal activity of the septum following various types of deafferentiation. Brain Res 187:353–368

    Article  Google Scholar 

  • Walsh TJ, Chrobak JJ (1990): Animal models of Alzheimer’s disease: Role of hippocampal cholinergic systems in working memory. In: Current Topics in Animal Learning: Brain, Emotion and Cognition, Dachowsky L, Flaherty C, eds. Hillsdale, NJ: Erlbaum

    Google Scholar 

  • Walsh TJ, Tilson HA, DeHaven DL, Mailman RB, Fisher A, Hanin I (1984): AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial-arm maze deficits in the rat. Brain Res 321:91–102

    Article  Google Scholar 

  • Wenk G, Hepler D, Olton DS (1984): Behavior alter the uptake of [3H] choline into acetylcholinergic neurons of the nucleus basalis magnocellularis and medial septal area. Behav Brain Res 13:129–138

    Article  Google Scholar 

  • Whishaw IQ (1987): Hippocampal, granule cell and CA3–4 lesions impair formation of a place learning-set in the rat and induce reflex epilepsy. Behav Brain Res 24:59–72

    Article  Google Scholar 

  • Winson J (1978): Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 210:160–163

    Article  Google Scholar 

  • Winson J, Abzug C (1978): Neuronal transmission through hippocampus pathways dependent on behavior. J Neurophysiol 41:463–476

    Google Scholar 

  • Wolfman C, Da Cunha C, Jerusalinsky D, Levi de Stein M, Viola H, Izquierdo I, Medina JH (1991): Habituation and inhibitory avoidance training alter brain regional levels of benzodiazepine-like molecules and are affected by intracerebral flumazenil microinjection. Brain Res 548:74–80

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Chrobak, J.J., Napier, T.C. (1992). Intraseptal GABAergic Infusions Disrupt Memory in the Rat: Method and Mechanisms. In: Levin, E.D., Decker, M.W., Butcher, L.L. (eds) Neurotransmitter Interactions and Cognitive Function. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9843-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9843-5_18

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9845-9

  • Online ISBN: 978-1-4615-9843-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics