Skip to main content

Role of Oxygen Radicals in Central Nervous System Trauma

  • Chapter
Oxygen Free Radicals in Tissue Damage

Abstract

There is now extensive experimental support for the early occurrence and pathophysiological importance of oxygen radical formation and cell membrane lipid peroxidation in the injured nervous system (Braughler and Hall, 1989; Demopoulos et al., 1980; Hall and Braughler, 1986; Kontos and Povlishock, 1986). The radical-initiated peroxidation of neuronal, glial, and vascular cell membranes and myelin is catalyzed by free iron released from hemoglobin, transferrin, and ferritin by either lowered tissue pH or oxygen radicals. If unchecked, lipid peroxidation is a geometrically progressing process that will spread over the surface of the cell membrane causing impairment to phospholipid-dependent enzymes, disruption of ionic gradients and, if severe enough, membrane lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DK, Waters TR, Means ED (1988a): Pretreatment with alpha tocopherol enhances neurologic recovery after spinal cord compression injury. J Neurotrama 6:61–68.

    Article  Google Scholar 

  • Anderson DK, Braughler JM, Hall ED, Waters TR, McCall JM, Means ED (1988b): Effects of treatment with U-74006F on neurological recovery following experimental of spinal cord injury. J Neurosurg 69:562–567.

    Article  Google Scholar 

  • Anderson DK, Hall ED, Braughler JM, McCall JM, Means ED (1991): Effect of delayed administration of U74006F (tirilazad mesylate) on recovery of locomotor function following experimental spinal cord injury. J Neurotrauma 8:187–192.

    Article  Google Scholar 

  • Anderson DK, Means ED (1983): Lipid peroxidation in spinal cord. FeCl2 induction and protection with antioxidants. Neurochem Path 1:249–264.

    Google Scholar 

  • Anderson DK, Means ED (1985): Iron-induced lipid peroxidation in spinal cord: protection with mannitol and methylprednisolone. J Free Rad Biol Med 1:59–64.

    Article  Google Scholar 

  • Anderson DK, Means ED (1985): Pathophysiological mechanisms in acute spinal cord trauma: effects of decompartmentalized iron on cellular membranes. In: Trauma of the Central Nervous System ,RG Dacey, HR Winn, RW Rimel, JA Jane, eds. New York: Raven Press.

    Google Scholar 

  • Anderson DK, Saunders RD, Demediuk P, Dugan LL, Braughler JM, Hall ED, Means ED, Horrocks LA (1985): Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. CNS Trauma 2:257–267.

    Google Scholar 

  • Audus KL, Guillot FL, Braughler JM (1991): Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells. Free Rad Biol Med 11:361–371.

    Article  Google Scholar 

  • Blight AR (1983): Axonal physiology of chronic spinal cord injury in the cat: intracellular recording in vitro. Neuroscience 10:1471–1486.

    Article  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm ES, Leo-Summers L, Maroon J, Marshall LF, Perot PL, Piepmeier J, Sonntag VKH, Wagner FC, Wilberger JE, Winn HR (1990): A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. N Engl J Med 322:1405–1411.

    Article  Google Scholar 

  • Braughler JM, Chase RL, Neff GL, Day JS, Hall ED, Sethy VH, Lahti RA (1988): A new 21-aminosteroid antioxidant lacking glucocorticoid activity stimulates ACTH secretion and blocks arachidonic acid release from mouse pituitary tumor (AtT-20) cells. J Pharmacol Exp Ther 244:423–427.

    Google Scholar 

  • Braughler JM, Hall ED (1983): Lactate and pyruvate metabolism in injured cat spinal cord before and after a single large intravenous dose of methylprednisolone. J Neurosurg 59:256–261.

    Article  Google Scholar 

  • Braughler JM, Hall ED (1989): Central nervous system trauma and stroke: I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6:289–301.

    Article  Google Scholar 

  • Braughler JM, Hall ED, Means ED, Waters T, Anderson DK (1987): Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. J Neurosurg 67:102–105.

    Article  Google Scholar 

  • Braughler JM, Pregenzer JF (1989): The 21-aminosteroid inhibitors of lipid peroxidation: reactions with lipid peroxyl and phenoxyl radicals. Free Rad Biol Med 7:125–130.

    Article  Google Scholar 

  • Braughler JM, Pregenzer JF, Chase RL, McCall JM, Jacobsen EJ (1987): Novel 21-aminosteroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262:10438–10440.

    Google Scholar 

  • Chan PH, Longar S, Fishman RA (1985): Oxygen-free radicals: potential edema mediators in brain injury. In: Brain Edema Inaba Y, Klatzo I, Spatz M, ed. Tokyo: Springer-Verlag.

    Google Scholar 

  • Clendenon NR, Allen H, Gordon WA, Bingham WG (1978): Inhibition of Na+ +K+ -activated ATPase activity following experimental spinal cord trauma. J Neurosurg 49:563–568.

    Article  Google Scholar 

  • Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML (1980): The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand 492(suppl):91–119.

    Google Scholar 

  • Demopoulos HB, Flamm ES, Seligman ML, Pietronigro DD, Tomasula J, De-Crescito V (1982): Further studies on free radical pathology in the major central nervous system disorders: effects of very high doses of methylprednisolone on the functional outcome, morphology and chemistry of experimental spinal cord impact injury. Can J Physiol 60:1415–1424.

    Article  Google Scholar 

  • Dimlich RVW, Tornheim PA, Kindel RM, Hall ED, Braughler JM, McCall JM (1990): Effects of a 21-aminosteroid (U-74006F) on cerebral metabolites and edema after severe experimental head trauma. In: Advances in Neurology ,Vol 52 ,Long D et al., eds. New York: Raven Press.

    Google Scholar 

  • Ellis EF, Wright KF, Wei EP, Kontos HA (1981): Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. J Neuwchem 37:892–896.

    Article  Google Scholar 

  • Giannotta SL, Weiss MH, Apuzzo MLJ, Martin E (1984): High dose glucocorticoids in the management of severe head injury. Neurosurgery 15:497–501.

    Article  Google Scholar 

  • Greenwood J (1991): Mechanisms of blood-brain barrier breakdown. Neuro radiology 33:95–100.

    Google Scholar 

  • Hall ED (1985): High-dose glucocorticoid treatment improves neurological recovery in head-injured mice. J Neurosurg 62:882–887.

    Article  Google Scholar 

  • Hall ED (1987): Intensive anti-oxidant pretreatment retards motor nerve degeneration. Brain Res 413:175–178.

    Article  Google Scholar 

  • Hall ED (1988): Effect of the 21-aminosteroid U74006F on post-traumatic spinal cord ischemia. J Neurosurg 68:462–465.

    Article  Google Scholar 

  • Hall ED, Baker T, Riker WF (1977): Glucocorticoid preservation of motor nerve function during early degeneration. Ann Neurol 1:263–269.

    Article  Google Scholar 

  • Hall ED, Braughler JM (1981): Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol 73:321–324.

    Article  Google Scholar 

  • Hall ED, Braughler JM (1982): Effects of intravenous methylprednisolone on spinal cord peroxidation and Na+ +K+ -ATPase activity: dose-response analysis during 1st hour after contusion injury in the cat. J Neurosurg 57:247–253.

    Article  Google Scholar 

  • Hall ED, Braughler JM (1986): Role of lipid peroxidation in post-traumatic spinal cord degeneration: a review. CNS Trauma 3:281–293.

    Google Scholar 

  • Hall ED, Braughler JM, Yonkers PA, Smith SL, Linseman KL, Means ED, Scherch HM, VonVoigtlander PF, Lahti RA, Jacobsen EJ (1991): U78517F, a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther 258:688–694.

    Google Scholar 

  • Hall ED, McCall JM, Braughler JM (1988): New pharmacological treatments for spinal cord trauma. J Neurotrauma 5:81–89.

    Article  Google Scholar 

  • Hall ED, Riker WF, Baker T (1983): Beneficial action of glucocorticoid treatment on neuromuscular transmission during early motor nerve degeneration. Exp Neurol 79: 488–196.

    Article  Google Scholar 

  • Hall ED, Telang FW (1985): Characteristics of lipid peroxidative conduction block induced by an organic hydroperoxide in axons of isolated frog nerve. CNS Trauma 2:161–168.

    Google Scholar 

  • Hall ED, Travis MA (1988): Inhibition of arachidonic acid-induced vasogenic brain edema by the non-glucocorticoid 21-aminosteroid U74006F. Brain Res 451:350–352.

    Article  Google Scholar 

  • Hall ED, Wolf DL (1984): Methylprednisolone preservation of motor nerve function during early degeneration. Exp Neurol 84:715–720.

    Article  Google Scholar 

  • Hall ED, Wolf DL (1986): A pharmacological analysis of the pathophysiological mechanisms of post-traumatic spinal cord ischemia. J Neurosurg 64:951–961.

    Article  Google Scholar 

  • Hall ED, Wolf DL, Braughler JM (1984): Effects of a single large dose of methylprednisolone sodium succinate on experimental post-traumatic spinal cord ischemia: dose-response and time-action analysis. J Neurosurg 61:124– 130.

    Article  Google Scholar 

  • Hall ED, Yonkers PA (1990): Preservation of motor nerve function during early degeneration by the 21-aminosteroid antioxidant U74006F. Brain Res 513: 244–247.

    Article  Google Scholar 

  • Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK (1992): Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma ,9(Suppl. 2):S425–S442.

    Article  Google Scholar 

  • Hall ED, Yonkers PA, Horan KL, Braughler JM (1989): Correlation between attenuation of post-traumatic spinal cord ischemia and preservation of vitamin E by the 21-aminosteroid U-74006F: evidence for an in vivo antioxidant action. J Neurotrauma 6:169–176.

    Article  Google Scholar 

  • Hall ED, Yonkers PA, McCall JM, Braughler JM (1988): Effect of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68:456–461.

    Article  Google Scholar 

  • Hsu CY, Halushka PV, Hogan EL, Banik NL, Lee WA, Perot PL (1985): Alteration of thrombone and prostacyclin levels in experimental spinal cord injury. Neurology 35:1003–1009.

    Article  Google Scholar 

  • Jonsson HT, Daniell HB (1976): Altered levels of PGF in cats spinal cord tissue following traumatic injury. Prostaglandins 11:51–61.

    Article  Google Scholar 

  • Kontos HA, Povlishock JT (1986): Oxygen radicals in brain injury. CNS Trauma 3:257–263.

    Google Scholar 

  • Kontos HA, Wei EP, Povlishock JT, Dietrich WD, Mageira DJ, Ellis EF (1980): Cerebral arteriolar damage by arachidonic acid and prostaglandin G2. Science 209:1242–1245.

    Article  Google Scholar 

  • Kukreja RC, Kontos HA, Hess ML, Ellis EF (1986): PGH synthase and lipoxygenase generate superoxide in the presence of NADH and NADPH. Circ Res 59:612–619.

    Article  Google Scholar 

  • Kurihara M (1985): Role of monoamines in experimental spinal cord injury. Relationship between Na+ +K+ -ATPase and lipid peroxidation. J Neurosurg 62:743–749.

    Article  Google Scholar 

  • McIntosh T, Banbury M, Smith D (1992): The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. Acta Neurochirurg 51(suppl):329–330.

    Google Scholar 

  • Milvy P, Kari S, Campbell JB, Demopoulos HB (1973): Paramagnetic species and radical products in cat spinal cord. Ann NY Acad Sci 222:1102–1111.

    Article  Google Scholar 

  • Monyer H, Hartley DM, Choi DW (1990): 21-Aminosteroids attenuate excito-toxic neuronal injury in cortical cell cultures. Neuron 5:121–126.

    Article  Google Scholar 

  • Pietronigro DD, Hovsepian M, Demopoulos HB, Flamm ES (1983): Loss of ascorbic acid from injured feline spinal cord. J Neurochem 41:1072–1076.

    Article  Google Scholar 

  • Saunders RD, Dugan LL, Demediuk P, Meand ED, Horrocks LA, Anderson DK (1987): Effects of methylprednisolone and the combination of alpha toco-pherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue. J Neurochem 49:24–31.

    Article  Google Scholar 

  • Stokes B, Fox P, Hollinden G (1983): Extracellular calcium activity in the injured spinal cord. Exp Neurol 80:561–572.

    Article  Google Scholar 

  • Wei EP, Lamb RG, Kontos HA (1982): Increased phospholipase C activity after experimental brain injury. J Neurosurg 56:695–698.

    Article  Google Scholar 

  • Willmore LJ, Rubin JJ (1984): Effects of antiperoxidants on FeC12-induced lipid peroxidation and focal edema in rat brain. Exp Neurol 83:62–70.

    Article  Google Scholar 

  • Young W (1985): Blood flow, metabolic and neurophysiological mechanisms in spinal cord injury. In: Central Nervous System Trauma Becker DB, Povlishock JT, eds. Status Report. Bethesda; NIH.

    Google Scholar 

  • Young W, Flamm ES (1982): Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57:667–673.

    Article  Google Scholar 

  • Young W, Yen V, Blight A (1982): Extra-cellular calcium ionic activity in experimental spinal cord contusion. Brain Res 253:105–113.

    Article  Google Scholar 

  • Zuccarello M, Anderson DK (1989): Protective effect of a 21-aminosteroid on the blood-brain barrier following subarachnoid hemorrhage in rats. Stroke. 20:367–371.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hall, E.D. (1993). Role of Oxygen Radicals in Central Nervous System Trauma. In: Tarr, M., Samson, F. (eds) Oxygen Free Radicals in Tissue Damage. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-9840-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9840-4_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-9842-8

  • Online ISBN: 978-1-4615-9840-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics