Skip to main content

Reactive Oxidant Species in Rat Brain Extracellular Fluid

  • Chapter
Book cover Oxygen Free Radicals in Tissue Damage

Abstract

Reactive oxidant species (ROS) include oxygen free radicals, hydrogen peroxide, lipid peroxides and hydroperoxides, singlet oxygen, oxygen redox-cycling molecules such as quinones and hydroquinones, hypochlorite, and peroxynitrite (Ames et al., 1989; Ames et al., 1981; Aruoma et al, 1989; Beckman et al., 1990; McCord, 1968; Pryor, 1986; Puppo et al., 1990). ROS contribute to damage in a variety of tissues during pathophysiological states, including insults to the central nervous system that result in neuropathology (Kontos, 1989; Siesjo et al., 1989a). Proving ROS participation in tissue damage and occurrence in vivo is difficult due to the characteristic short half-lives of these reactive molecules. Methods for ROS detection in vivo include: (a) administering free radical spin trapping agents to animals followed by electron spin resonance spectroscopy of tissue homogenates (Carney and Floyd, 1991; Imaizumi et al., 1986; Lai et al., 1986; Oliver et al., 1990), ( b) salicylate administration to animals, which can form adducts with ROS, followed by high performance liquid chromatography with electrochemical detection (Cao et al., 1988; Floyd et al., 1984), (c) nitroblue tetrazolium and cytochrome c reduction by electron transfer reactions with ROS in biological systems with subsequent spectrophotometric quantification (Armstead et al., 1989; Kennedy et al., 1989; Kontos et al., 1985; Kontos and Povlishock, 1986; McCord, 1968), and (d) ROS-initiated chemiluminescence, or light production by excited molecules, which can be assayed in various animal models (Boveris et al., 1980; Flecha et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amberg G, Lindefors N (1989): Intracerebral microdialysis: II. Mathematical studies of diffusion kinetics. J Pharmacol Meth 22(3): 157–183.

    Article  Google Scholar 

  • Ames B, Cathcart R, Schwiers E, Hochstein P (1981): Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer. A hypothesis. Proc Natl Acad Sci USA 78 (11):6858–6862.

    Article  Google Scholar 

  • Ames BN (1989a): Endogenous DNA damage as related to cancer and aging. Mutant Res 214(1):41–46.

    Article  Google Scholar 

  • Ames BN (1989b): Endogenous oxidative DNA damage, aging, and cancer. Free Radic Res Commun 7(3–6): 121–128.

    Article  Google Scholar 

  • Anderson DK, Saunders RD, Demediuk P, Dugan LL, Braughler JM, Hall ED, Means ED, Horrocks LA (1985): Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma 2(4):257–267.

    Google Scholar 

  • Armstead WM, Mirro R, Leffler CW, Busija DW (1989): Cerebral superoxide anion generation during seizures in newborn pigs. J Cereb Blood Flow Metab 9(2): 175–179.

    Article  Google Scholar 

  • Aruoma OI, Smith C, Cecchini R, Evans PJ, Halliwell B (1991): Free radical scavenging and inhibition of lipid peroxidation by beta-blockers and by agents that interfere with calcium metabolism. A physiologically-significant process? Biochem Pharmacol 42(4):735–743.

    Article  Google Scholar 

  • Aruoma OI, Akanmu D, Cecchini R, Halliwell B (1991): Evaluation of the ability of the angiotensin-converting enzyme inhibitor Captopril to scavenge reactive oxygen species. Chem Biol Interact 77(3):303–314.

    Article  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1989): The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Rad Biol Med 6(6):593–597.

    Article  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1988): The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 256(1):251–255.

    Google Scholar 

  • Asano T, Gotoh O, Koide T, Takakura K (1985): Ischemic brain edema following occlusion of the middle cerebral artery in the rat. II: Alteration of the eicosanoid synthesis profile of brain microvessels. Stroke 16(1):110–113.

    Article  Google Scholar 

  • Asano T, Koide T, Gotoh O, Joshita H, Hanamura T, Shigeno T, Takakura K (1989): The role of free radicals and eicosanoids in the pathogenic mechanism underlying brain edema. Mol Chem Neuropathol 10(2): 101–133.

    Article  Google Scholar 

  • Babbs CF, Steiner MG (1990): Stimulation of free radical reactions in biology and medicine: a new two-compartment kinetic model of intracellular lipid peroxidation. Free Rad Biol Med 8(5):471–485.

    Article  Google Scholar 

  • Backon J (1991): Dementia in cancer patients undergoing chemotherapy: implication of free radical injury and relevance to Alzheimer disease. Med Hypotheses 35(2):146–147.

    Article  Google Scholar 

  • Barja dQG, Perez CR, Lopez TM (1990): Changes in cerebral antioxidant enzymes, peroxidation, and the glutathione system of frogs after aging and catalase inhibition. J Neurosci Res 26(3):370–376.

    Article  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990): Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87(4):1620–1624.

    Article  Google Scholar 

  • Beneviste H, Hüttemeier P (1990): Microdialysis-theory and application. Prog Neurobiol 35:195–215.

    Article  Google Scholar 

  • Benzi G, Marzatico F, Pastoris O, Villa RF (1990): Influence of oxidative stress on the age-linked alterations of the cerebral glutathione system. J Neurosci Res 26(1):120–128.

    Article  Google Scholar 

  • Benzi G, Pastoris O, Marzatico F, Villa RF (1988): Influence of aging and drug treatment on the cerebral glutathione system. Neurobiol Aging 9(4):371–375.

    Article  Google Scholar 

  • Benzi G, Pastoris O, Marzatico F, Villa RF (1989): Age-related effect induced by oxidative stress on the cerebral glutathione system. Neurochem Res 14(5): 473–481.

    Article  Google Scholar 

  • Benzi G, Pastoris O, Villa RF (1988): Changes induced by aging and drug treatment on cerebral enzymatic antioxidant systems. Neurochem Res 13(5):467–478.

    Article  Google Scholar 

  • Bourre JM (1988): Free radicals, polyunsaturated fatty acids, cell death, brain aging. C R Soc Biol Paris 182 (1):5–36.

    Google Scholar 

  • Boveris A, Cadenas E, Reiter R, Filipowski M, Nakase Y, Chance B (1980): Organ chemiluminescence: noninvasive assay for oxidative radical reactions. Proc Natl Acad Sci USA 77(1):347–351.

    Article  Google Scholar 

  • Braughler JM, Hall ED (1989): Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6(3):289–301.

    Article  Google Scholar 

  • Buettner G, Scott B, Kerber R, Mugge A (1991): Free radicals from plastic syringes. Free Rad Biol Med 11:69–70.

    Article  Google Scholar 

  • Buzadzic B, Spasic M, Saicic Z, Radojicic SR, Halliwell B, Petrovic VM (1990): Antioxidant defenses in the ground squirrel Citellus citellus. 1. A comparison with the rat. Free Rod Biol Med 9(5):401–406.

    Article  Google Scholar 

  • Cao W, Carney JM, Duchon A, Floyd RA, Chevion M (1988): Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88(2):233–238.

    Article  Google Scholar 

  • Carney JM, Floyd RA (1991): Protection against oxidative damage to CNS by alpha-phenyl-tert-butyl nitrone (PBN) and other spin-trapping agents: a novel series of nonlipid free radical scavengers. J Mol Neurosci 3 (1):47–57.

    Article  Google Scholar 

  • Carney JM, Starke-Reed P, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991): Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 88(9):3633–3636.

    Article  Google Scholar 

  • Chastain J, Samson F, Nelson SR, Pazdernik TL (1989): Kainic acid-induced seizures: changes in brain extracellular ions as assessed by intracranial microdialysis. Life Sci 45(9):811–817.

    Article  Google Scholar 

  • Demediuk P, Saunders RD, Anderson DK, Means ED, Horrocks LA (1985a): Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc Natl Acad Sci USA 82(20):7071–7075.

    Article  Google Scholar 

  • Demediuk P, Saunders RD, Clendenon NR, Means ED, Anderson DK, Horrocks LA (1985b): Changes in lipid metabolism in traumatized spinal cord. Prog Brain Res 63(211):211–226.

    Article  Google Scholar 

  • Demediuk P, Faden AI (1988): Traumatic spinal cord injury in rats causes increases in tissue thromboxane but not peptidoleukotrienes. J Neurosci Res 20(1):115–121.

    Article  Google Scholar 

  • Demediuk P, Daly MP, Faden AI (1989): Changes in free fatty acids, phospholipids, and cholesterol following impact injury to the rat spinal cord. J Neurosci Res 23(1):95–106.

    Article  Google Scholar 

  • Faden AI, Lemke M, Demediuk P (1988): Effects of BW755C, a mixed cyclooxygenase-lipoxygenase inhibitor, following traumatic spinal cord injury in rats. Brain Res 463(1):63–68.

    Article  Google Scholar 

  • Flecha B, Llesuy S, Boveris A (1991): Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Rad Biol Med 10:93–100.

    Article  Google Scholar 

  • Floyd RA (1990): Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4(9):2587–2597.

    Google Scholar 

  • Floyd RA, Watson JJ, Wong PK (1984): Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J Biochem Biophys Meth 10(3–4):221–235.

    Article  Google Scholar 

  • Fraga CG, Shigenaga NK, Park JW, Degan P, Ames BN (1990): Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87(12):4533–4537.

    Article  Google Scholar 

  • Frei B, Stocker R, Ames BN (1988): Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 85(24):9748–9752.

    Article  Google Scholar 

  • Frei B, Stocker R, England L, Ames BN (1990): Ascorbate: the most effective antioxidant in human blood plasma. Adv Exp Med Biol 264(155):155–163.

    Article  Google Scholar 

  • Frei B, Yamamoto Y, Niclas D, Ames BN (1988): Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human blood plasma. Anal Biochem 175(1):120–130.

    Article  Google Scholar 

  • Gutteridge JM, Halliwell B (1988): The deoxyribose assay: an assay both for ‘free’ hydroxyl radical and for site-specific hydroxyl radical production [letter]. Biochem J 253(3):932–933.

    Google Scholar 

  • Gutteridge JM, Halliwell B (1989): Iron toxicity and oxygen radicals. Baillieres Clin Haematol 2(2):195–256.

    Article  Google Scholar 

  • Hall ED, Braughler JM (1989): Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad Biol Med 6(3):303–313.

    Article  Google Scholar 

  • Halliwell B (1989): Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke? Acta Neurol Scand Suppl 126(23):23–33.

    Article  Google Scholar 

  • Halliwell B, Aruoma OI (1991): DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281(1–2): 9–19.

    Article  Google Scholar 

  • Halliwell B, Grootveld M, Gutteridge JM (1988): Methods for the measurement of hydroxyl radicals in biomedical systems: deoxyribose degradation and aromatic hydroxylation. Meth Biochem Anal 33(59):59–90.

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987): The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions for hydroxyl radicals. Anal Biochem 165(1):215–219.

    Article  Google Scholar 

  • Halliwell B, Kaur H, Ingelman SM (1991): Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note [letter]. Free Rad Biol Med 10(6):439–441.

    Article  Google Scholar 

  • Hamagishi Y, Murata S, Kamei H, Oki T, Adachi O, Ameyama M (1990): New biological properties of pyrroloquinoline quinone and its related compounds: inhibition of chemiluminescence, lipid peroxidation and rat paw edema. / Pharmacol Exp Ther 255(3):980–985.

    Google Scholar 

  • Hiramatsu M, Edamatsu R, Kohno M, Mori A (1986): The possible involvement of free radicals in seizure mechanism. Jpn J Psychiatry Neurol 40(3):349–352.

    Google Scholar 

  • Imaizumi S, Tominaga T, Uenohara H, Yoshimoto T, Suzuki J, Fujita Y (1986): Initiation and propagation of lipid peroxidation in cerebral infarction models. Experimental studies. Neurol Res 8(4):214–220.

    Google Scholar 

  • Janero DR, Burghardt B (1989): Thiobarbituric acid-reactive malondialdehyde formation during superoxide-dependent, iron-catalyzed lipid peroxidation: influence of peroxidation conditions. Lipids 24(2):125–131.

    Article  Google Scholar 

  • Joshita H, Asano T, Hanamura T, Takakura K (1989): Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats. Stroke 20(6):788–794.

    Article  Google Scholar 

  • Kahl R, Weimann A, Weinke S, Hildebrandt AG (1987): Detection of oxygen activation and determination of the activity of antioxidants towards reactive oxygen species by use of the chemiluminigenic probes luminol and lucigenin. Arch Toxicol 60(1–3):158–162.

    Article  Google Scholar 

  • Kanemitsu H, Tamura A, Kirino T, Oka H, Sano K, Iwamoto T, Yoshiura M, Iriyama K (1989): Allopurinol inhibits uric acid accumulation in the rat brain following focal cerebral ischemia. Brain Res 499(2):367–370.

    Article  Google Scholar 

  • Kennedy T, Rao N, Hopkins C, Pennington L, Tolley E, Hoidal J (1989): Role of reactive oxygen species in reperfusion injury of the rabbit lung. J Clin Invest 83:1326–1335.

    Article  Google Scholar 

  • Knobeloch LM, Blondin GA, Lyford SB, Harkin JM (1990): A rapid bioassay for chemicals that induce pro-oxidant states. J Appl Toxicol 10(1): 1–5.

    Article  Google Scholar 

  • Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988): Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85(9):3175–3179.

    Article  Google Scholar 

  • Koide T, Gotoh O, Asano T, Takakura K (1985): Alterations of the eicosanoid synthetic capacity of rat brain microvessels following ischemia: relevance to ischemic brain edema. J Neurochem 44(1):85–93.

    Article  Google Scholar 

  • Kontos HA (1987): Oxygen radicals from arachidonate metabolism in abnormal vascular responses. Am Rev Respir Dis 136(2):474–477.

    Article  Google Scholar 

  • Kontos HA (1989): Oxygen radicals in CNS damage. Chem Biol Interact 72(3):229–255.

    Article  Google Scholar 

  • Kontos HA, Wei EP, Ellis EF, Jenkins LW, Povlishock JT, Rowe GT, Hess ML (1985): Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res 57(1):142–151.

    Article  Google Scholar 

  • Kontos HA, Povlishock JT (1986): Oxygen radicals in brain injury. Cent Nerv Syst Trauma 3(4):257–263.

    Google Scholar 

  • Kontos HA, Wei EP (1986): Superoxide production in experimental brain injury. J Neurosurg 64(5):803–807.

    Article  Google Scholar 

  • Lai EK, Crossley C, Sridhar R, Misra HP, Janzen EG, McCay PB (1986): in vivo spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice. Arch Biochem Biophys 244(1): 156–160.

    Article  Google Scholar 

  • Leffler CW, Busija DW, Armstead WM, Mirro R (1987): Prostanoids and pial arteriolar diameter in hypotensive newborn pigs. Am J Physiol 252:H687– H691.

    Google Scholar 

  • Lehmann A, Hagberg H, Jacobson I, Hamberger A (1985): Effects of status epilepticus on extracellular amino acids in the hippocampus. Brain Res 359(1-2):147–151.

    Article  Google Scholar 

  • Lemke M, Frei B, Ames BN, Faden AI (1990): Decreases in tissue levels of ubiquinol-9 and -10, ascorbate and alpha-tocopherol following spinal cord impact trauma in rats. Neurosci Lett 108(1–2):201–220.

    Article  Google Scholar 

  • Makino R, Tanaka T, Iizuka T, Ishimura Y, Kanegasaki S (1986): Stoichiometric conversion of oxygen to superoxide anion during the respiratory burst in neutrophils. Direct evidence by a new method for measurement of superoxide anion with diacetyldeuteroheme-substituted horseradish peroxidase. J Biol Chem 261(25):11444–11447.

    Google Scholar 

  • McCord J, Fridovich I (1969): Superoxide dismutase: an enzymic function for erythrocuprein. J Biol Chem 244(22):6049.

    Google Scholar 

  • McCord J, Fridovich I (1968): The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 213(21):5753–5760.

    Google Scholar 

  • Miller DM, Aust SD (1989): Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation. Arch Biochem Biophys 271(1):113–119.

    Article  Google Scholar 

  • Mizoi K, Suzuki J, Imaizumi S, Yoshimoto T (1986): Development of new cerebral protective agents: the free radical scavengers. Neurol Res 8(2):75–80.

    Google Scholar 

  • Moorhouse PC, Grootveld M, Halliwell B, Quinlan JG, Gutteridge JM (1987): Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett 213 (1):23–28.

    Article  Google Scholar 

  • Nakano S, Kogure K, Abe K, Yae T (1990): Ischemia-induced alterations in lipid metabolism of the gerbil cerebral cortex: I. Changes in free fatty acid liberation. J Neurochem 54(6): 1911–1916.

    Article  Google Scholar 

  • Niki E (1991): Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 54:1119S–1124S.

    Google Scholar 

  • Olanow CW (1990): Oxidation reactions in Parkinson’s disease. Neurology 40(10):S32–S37.

    Google Scholar 

  • Oliver CN, Starke-Reed P, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990): Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87(13):5144–5147.

    Article  Google Scholar 

  • Park JW, Cundy KC, Ames BN (1989): Detection of DNA adducts by high-performance liquid chromatography with electrochemical detection. Carcinogenesis 10(5):827–832.

    Article  Google Scholar 

  • Patt A, Harken AH, Burton LK, Rodell TC, Piermattei D, Schorr WJ, Parker NB, Berger EM, Horesh IR, Terada LS, Stuart L, Cheronis JC, Repine JE (1988): Xanthine oxidase-derived hydrogen peroxide contributes to ischemia reperfusion-induced edema in gerbil brains. J Clin Invest 81(5):1556–1562.

    Article  Google Scholar 

  • Patt A, Horesh IR, Berger EM, Harken AH, Repine JE (1990): Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. J Pediatr Surg 25(2):224–227.

    Article  Google Scholar 

  • Paxinos G, Watson C (eds.) (1986): The Rat Brain in Stereotaxic Coordinates ,2nd ed. North Ryde, NSW, Australia: Academic Press.

    Google Scholar 

  • Pekoe GM (1985): Adaptation of the liquid scintillation counter to measure rapid burst chemiluminescence reactions. In: Bioluminescence and Chemilumines-cence: Instruments and Applications ,vol 2, Van Dyke K, ed. Boca Raton: CRC Press, p. 147–158.

    Google Scholar 

  • Pellmar TC, Neel KL (1989): Oxidative damage in the guinea pig hippocampal slice. Free Rad Biol Med 6(5):467–472.

    Article  Google Scholar 

  • Pellmar TC, Neel KL, Lee KH (1989): Free radicals mediate peroxidative damage in guinea pig hippocampus in vitro . J Neurosci Res 24(3):437–444.

    Article  Google Scholar 

  • Pellmar TC, Tolliver JM, Neel KL (1988): Radiation-induced impairment of neuronal excitability. Fundam Appl Toxicol 11(4):577–578.

    Google Scholar 

  • Prat AG, TYirrens JF (1990): Ascorbate-and hemoglobin-dependent brain chemiluminescence. Free Rad Biol Med 8(4):319–325.

    Article  Google Scholar 

  • Pritsos CA, Constantinides PP, Tritton TR, Heimbrook DC, Sartorelli AC (1985): Use of high-performance liquid chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C. Anal Biochem 150(2):294–299.

    Article  Google Scholar 

  • Pruess SD, Nimesheim A, Marnett LJ (1989): Peroxyl radical-and cytochrome P-450-dependent metabolic activation of (+)-7,8-dihydroxy-7,8-dihydrobenzo-(a)pyrene in mouse skin in vitro and in vivo. Cancer Res 49(7):1732–1737.

    Google Scholar 

  • Pryor WA (1986): Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667.

    Article  Google Scholar 

  • Puppo A, Cecchini R, Aruoma OI, Bolli R, Halliwell B (1990): Scavenging of hypochlorous acid and of myoglobin-derived oxidants by the cardioprotective agent mercaptopropionylglycine. Free Rad Res Commun 10(6):371–381.

    Article  Google Scholar 

  • Rao PS, Rujikarn N, Luber JJ (1988): High-performance liquid chromatographic method for the direct quantitation of oxy radicals in myocardium and blood by means of 1,3-dimethylthiourea and dimethyl sulfoxide. J Chromatogr 459(269):269–273.

    Google Scholar 

  • Reed GA, Layton ME, Ryan MJ (1988): Metabolic activation of cyclopenteno[c,d]pyrene by peroxyl radicals. Carcinogenesis 9(12):2291–2295.

    Article  Google Scholar 

  • Rehncrona S, Smith D, Akesson B, Westerberg E, Siesjo B (1980): Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe+2-and ascorbic acid-stimulated lipid peroxidation in vitro. J Neurochem 34(6):1630–1638.

    Article  Google Scholar 

  • Riederer P, Sofic E, Rausch W, Schmidt B, Reynolds G, Jellinger K, Youdim M (1989): Transition metals ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520.

    Article  Google Scholar 

  • Riesz P, Kondo T, Krishna CM (1990): Free radical formation by ultrasound in aqueous solutions. A spin trapping study. Free Rad Res Commun 10 (1–2):27–35.

    Article  Google Scholar 

  • Roswell D, White EH (1978): The chemiluminescence of luminol and related hydrazides. Methods Enzymol 57:409–455.

    Article  Google Scholar 

  • Rothman SM, Olney JW (1986): Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19(2):105–111.

    Article  Google Scholar 

  • Sadrzadeh S, Anderson D, Panter S, Hallaway P, Eaton J (1987): Hemoglobin potentiates central nervous system damage. J Clin Invest 79:662–664.

    Article  Google Scholar 

  • Sadrzadeh SM, Eaton JW (1988): Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate. J Clin Invest 82(5):1510–1515.

    Article  Google Scholar 

  • Saunders RD, Dugan LL, Demediuk P, Means ED, Horrocks LA, Anderson DK (1987): Effects of methylprednisolone and the combination of alphatocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue. J Neurochem 49(1):24–31.

    Article  Google Scholar 

  • Siesjo BK, Agardh CD, Bengtsson F (1989a): Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1(3):165–211.

    Google Scholar 

  • Siesjo BK, Agardh CD, Bengtsson F, Smith ML (1989b): Arachidonic acid metabolism in seizures. Ann NY Acad Sci 559(323):323–339.

    Article  Google Scholar 

  • Siesjo BK, Bengtsson F (1989c): Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9(2):127–140.

    Article  Google Scholar 

  • Stadtman ER, Oliver CN, Levine RL, Fucci L, Rivett AJ (1988): Implication of protein oxidation in protein turnover, aging, and oxygen toxicity. Basic Life Sei 49(331):331–339.

    Google Scholar 

  • Starke-Reed P, Oliver C (1988): Oxidative modification of enzymes during aging and acute oxidative stress. Basic Life Sci 49(537):537–540.

    Google Scholar 

  • Starke-Reed P, Oliver C (1989): Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275(2):559–567.

    Article  Google Scholar 

  • Sugata R, Iwahashi H, Ishii T, Kido R (1989): Separation of polyunsaturated fatty acid radicals by high-performance liquid chromatography with electron spin resonance and ultraviolet detection. J Chromatogr 487(1):9–16.

    Google Scholar 

  • Takeuchi H, Handa Y, Kobayashi H, Kawano H, Hayashi M (1991): Impairment of cerebral autoregulation during the development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Neurosurgery 28:41–48.

    Article  Google Scholar 

  • Tanaka T, Kanegasaki S, Makino R, Iizuka T, Ishimura Y (1987): Saturated and trans-unsaturated fatty acids elicit high levels of superoxide generation in intact and cell-free preparations of neutrophils. Biochem Biophys Res Commun 144(2):606–612.

    Article  Google Scholar 

  • Tominaga T, Imaizumi S, Yoshimoto T, Suzuki J, Fujita Y (1987): Application of spin-trapping study to rat ischemic brain homogenate incubated with NADPH and Fe-EDTA. Brain Res 402(2):370–372.

    Article  Google Scholar 

  • Uyama O, Shiratsuki N, Matsuyama T, Nakanishi T, Matsumoto Y, Yamada T, Narita M, Sugita M (1990): Protective effects of superoxide dismutase on acute reperfusion injury of gerbil brain. Free Rad Biol Med 8(3):265–268.

    Article  Google Scholar 

  • Wade JV, Samson FE, Nelson SR, Pazdernik TL (1987): Changes in extracellular amino acids during soman-and kainic acid-induced seizures. J Neurochem 49(2):645–650.

    Article  Google Scholar 

  • Wasil M, Halliwell B, Grootveld M, Moorhouse CP, Hutchison DC, Baum H (1987): The specificity of thiourea, dimethylthiourea and dimethyl sulphoxide as scavengers of hydroxyl radicals. Their protection of alpha 1-antiproteinase against inactivation by hypochlorous acid. Biochem J 243(3):867–870.

    Google Scholar 

  • Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980): Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive injury in cats. Ore Res 46:37–47.

    Google Scholar 

  • Wei EP, Ellison MD, Kontos HA, Povlishock JT (1986): O2 radicals in arachi -donate-induced increased blood-brain barrier permeability to proteins. Am J Physiol 251(4, Pt.2):H693–699.

    Google Scholar 

  • Wieland E, Niedmann D, Diedrich F, Seidel D, Kather H (1989): Luminescence in the study of lipid metabolism. J Biolwnin Chemilumin 4(1): 436–445.

    Article  Google Scholar 

  • Willmore L, Triggs W, Gray J (1986): The role of iron-induced hippocampal peroxidation in acute epileptogenesis. Brain Res 382:422–426.

    Article  Google Scholar 

  • Yamamoto Y, Ames BN (1987): Detection of lipid hydroperoxides and hydrogen peroxide at picomole levels by an HPLC and isoluminol chemiluminescence assay. Free Rad Biol Med 3(5):359–361.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Layton, M.E., Pazdernik, T.L. (1993). Reactive Oxidant Species in Rat Brain Extracellular Fluid. In: Tarr, M., Samson, F. (eds) Oxygen Free Radicals in Tissue Damage. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-9840-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9840-4_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-9842-8

  • Online ISBN: 978-1-4615-9840-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics