Skip to main content

Oxygen Free Radicals in the Pathophysiology of Myocardial Ischemia/Reperfusion

  • Chapter
Oxygen Free Radicals in Tissue Damage

Abstract

In the setting of an acute myocardial infarction, there is a limited time window after the onset of coronary artery occlusion after which reperfusion is associated with irreversible cardiac injury. Cellular morphology by light and electron microscopy may be only mildly abnormal immediately before reperfusion, but becomes markedly distorted with sarcolemmal disruption, swollen mitochondria, and contraction band necrosis within minutes of reperfusion (Jennings and Ganote, 1974). It has been traditionally held that the major component of this irreversible injury occurs during the ischemic period itself, and that reperfusion only unmasks the latent damage (Braunwald and Kloner, 1985). However, it has become apparent that the conditions of reperfusion can significantly influence ultimate recovery of function (Buckberg, 1986; Kloner et al., 1989), consistent with the possibility that the act of reperfusion may convert potentially reversible ischemic injury into irreversible damage. In addition to this type of irreversible reperfusion injury, reperfusion after shorter durations of ischemia is associated with reversible myocardial dysfunction, or stunning, in which contractile and metabolic abnormalities may persist for hours to weeks before eventually recovering (Braunwald and Kloner, 1982). It has been shown that modifying the conditions of reperfusion can also reduce the severity of stunning (Kitakaze et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arroyo CM, Cramer JH, Dickens BF, Weglicki WB (1987): Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett 221:101–104.

    Article  Google Scholar 

  • Baker JE, Felix CC, Olinger GN, Kalyanaraman B (1988): Myocardial ischemia and reperfusion: Direct evidence for free radical generation electron spin resonance spectroscopy. Proc Natl Acad Sci USA 85:2786–2789.

    Article  Google Scholar 

  • Barrington PL, Meier CF Jr., Weglicki WB (1988): Abnormal electrical activity induced by free radical generating systems in isolated cardiocytes. J Mol Cell Cardiol 20:1163–1178.

    Article  Google Scholar 

  • Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T (1986): Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 7:580–589.

    Article  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990): Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624.

    Article  Google Scholar 

  • Bhatnagar A, Srivastava SK, Szabo G (1990): Oxidative stress alters specific membrane currents in isolated cardiac myocytes. Cire Res 67:525–549.

    Article  Google Scholar 

  • Bolli R (1988): Oxygen-derived free radicals and postischemic myocardial dysfunction (stunned myocardium). J Am Coll Cardiol 12:239–249.

    Article  Google Scholar 

  • Bolli R (1990): Mechanism of myocardial “stunning.” Circulation 82:723–738.

    Article  Google Scholar 

  • Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB (1987): Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap α-phenyl-n-tertbutyl nitrone. J Clin Invest 82:476–485.

    Article  Google Scholar 

  • Bolli R, Zhu WX, Myers ML, Hartley CJ, Roberts R (1985): Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deterioration. Am J Cardiol 56:964–968.

    Article  Google Scholar 

  • Braunwald E, Kloner RA (1982): The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149.

    Article  Google Scholar 

  • Braunwald E, Kloner RA (1985): Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719.

    Article  Google Scholar 

  • Buckberg GD (1986): Studies of controlled reperfusion after ischemia. I: when is cardiac muscle irreversibly damaged? J Thorac Cardiovasc Surg 92:483–487.

    Google Scholar 

  • Buchwald A, Klein HH, Nebendahl K, Pich S, Kruezer H (1987): Effect of intracoronary superoxide dismutase on regional myocardial function after brief periods of ischemia. Circulation 76(suppl IV):IV–229 Abstract.

    Google Scholar 

  • Burton KP, Morris AC, Massey KD, Buja LM, Hagler HK (1990): Free radicals alter ionic calcium levels and membrane phospholipids in culture rat ventricular myocytes. J Mol Cell Cardiol 22:1035–1047.

    Article  Google Scholar 

  • Chambers DE, Parks DA, Patterson G, et al. (1985): Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17:145–152.

    Article  Google Scholar 

  • Coetzee WA, Opie LH (1988): Electrophysiological effects of free oxygen radicals on guinea pig ventricular myocytes. J Mol Cell Cardiol 21(suppl V):S.17.

    Google Scholar 

  • Coretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marban E (1991): Glycolytic inhibition and calcium overload as consequences of exogenously-generated free radicals in rabbit hearts. J Clin Invest 88:1014–1025.

    Article  Google Scholar 

  • Dixon IM, Kaneko M, Hata T, Panagia V, Dhalla NS (1990): Alterations in cardiac membrane Ca2+ transport during oxidative stress. Mol Cell Biochem 99:125–133.

    Article  Google Scholar 

  • Ferrari R, Ceconi C, Curello S, Guarnieri, Calderera CM, Albertini A, Visioli O (1985): Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defenses against oxygen toxicity. J Mol Cell Cardiol 17:937–945.

    Article  Google Scholar 

  • Garlick PB, Davies MJ, Hearse DJ, Slater TF (1987): Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. CireRes 61:757–760.

    Google Scholar 

  • Goldhaber JI, Ji S, Lamp ST, Weiss JN (1989): Effect of exogenous free radicals in electromechanical function and metabolism in isolated rabbit and guinea pig ventricle. J Clin Invest 83:1800–1809.

    Article  Google Scholar 

  • Goldhaber JI, Liu E, Weiss JN (1991): Effects of H2O2 on [Ca2+ ]i and excitation-contraction coupling in isolated cardiac myocytes. Circulation 84(Suppl II):II–549.

    Google Scholar 

  • Hearse DJ, Kusama Y, Bernier M (1989): Rapid electrophysiological changes leading to arrhythmias in the aerobic rat heart. Circ Res 65:146–153.

    Article  Google Scholar 

  • Henry TD, Archer SL, Nelson DP, Weir EK, From AHL (1989): Effect of anion channel blockade on oxygen radical induced chemiluminescence in postishemic myocardium. Circulation 80(Suppl. II):II–31.

    Google Scholar 

  • Henry TD, Archer SL, Nelson D, Weir EK, From AHL (1990): Enhanced chemiluminescence as a measure of oxygen-derived free radical generation during ischemia and reperfusion. Circ Res 67:1453–1461.

    Article  Google Scholar 

  • Hyslop PA, Hinshaw DB, Halsey WA Jr., Schraufstatter IU, Sauerheber RD, Spraggs RG, Jakcson JH, Cochrane CG (1988): Mechanisms of oxidant-mediated cell injury. J Biol Chem 1665–1675.

    Google Scholar 

  • Jennings RB, Ganote CE (1974): Structural changes in myocardium during acute ischemia. Circ Res 34/35(Suppl. III):III-156-III–171.

    Google Scholar 

  • de Jong JWD, Meer PVD, Nieukoop AS, Huizer T, Stroeve RJ, Bos E (1990): Xanthine oxidoreductase activity in perfused hearts of various species, including humans. Circ Res 67:770–773.

    Article  Google Scholar 

  • Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL (1991): Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 266:2354–2361.

    Google Scholar 

  • Kaneko M, Beamish RE, Dhalla NS (1989): Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Am J Physiol 256:H368–H374.

    Google Scholar 

  • Keuhl EA, Humes JL, Ham EA (1980): Inflammation: the role of peroxidase-derived products. Adv Prostagland Thromb Res 6:77–86.

    Google Scholar 

  • Kim M-S, Akera T (1987): O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase. Am J Physiol 252:H252–H257.

    Google Scholar 

  • Kitakaze M, Weisman HF, Marban E (1988): Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695.

    Article  Google Scholar 

  • Kloner RA, Przyklenk K, Whittaker P (1989): Deleterious effects of oxygen radical in ischemia/reperfusion: resolved and unresolved issues. Circulation 80:1115–1127.

    Article  Google Scholar 

  • Kukreja RC, Weaver AB, Hess ML (1990): Sarcolemmal Na+-K+ -ATPase: in-activation by neutrophil-derived free radicals and oxidants. Am J Physiol 259:H1330–H1336.

    Google Scholar 

  • Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E (1989): Excitation-contraction coupling in postischemic myocardium. Circ Res 66:1268– 1276.

    Article  Google Scholar 

  • Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987): Pathophysiology and pathogenesis of stunned myocardium. J Clin Invest 79:950– 961.

    Article  Google Scholar 

  • Lee H-C, Smith N, Mohabir R, Clusin WT (1987): Cystolic calcium transients from the beating mammalian heart. Physiol Sci 84:7793–7797.

    Google Scholar 

  • Lefer DJ, Ma X, Johnson G, Lefer AM (1990): Endothelium preservation as a major mechanism of cardioprotection by superoxide dismutase in myocardial ischemia-reperfusion injury. Circulation 82(suppl III):III–170.

    Google Scholar 

  • Lynch RM, Paul RJ (1983): Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science 222:1344–1346.

    Article  Google Scholar 

  • Mak IT, Kramer JH, Freedman AM, Tse SYH, Weglicki WB (1990): Oxygen radical-mediated injury of myocytes-protection. J Mol Cell Cardiol 22:687– 695.

    Article  Google Scholar 

  • Mak IT, Weglicki WB (1988): Protection by β-blocking agents against free radical-mediated sarcolemmal lipid peroxidation. Circ Res 63:262–266.

    Article  Google Scholar 

  • Malis CD, Bonventre JV (1986): Mechanism of calcium potentiation of oxygen free radical injury renal mitochondria. J Biol Chem 261:14201–14208.

    Google Scholar 

  • Manning A, Bernier M, Crome R, Little S, Hearse D (1988): Reperfusion-induced arrhythmias: a study of the role of xanthine oxidase-derived free radicals in the rat heart. J Mol Cell Cardiol 20:35–45.

    Article  Google Scholar 

  • Manning AS, Hearse DJ (1984): Reperfusion-induced arrythmias: mechanisms and prevention. J Mol Cell Cardiol 16:497–518.

    Article  Google Scholar 

  • Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP (1987): Intracellular free calcium concentration measured with 19F NMR spectros-copy in intact ferret hearts. Physiol Sei 84:6005–6009.

    Google Scholar 

  • McCord JM (1985): Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163.

    Article  Google Scholar 

  • Morris TE, Prakash XV, Sulakhe PV (1990): Free radicals-induced rapid dys function of sarcoplasmic reticulum calcium pump in rat cardiomyocytes. Cir culation 82:III–264.

    Article  Google Scholar 

  • Nakaya H, Tohse N, Kanno M (1987): Electrophysiological derangements induced by lipid peroxidation in cardiac tissue. Am J Physiol 253 :H1089–H1097.

    Google Scholar 

  • Okabe E, Odajima C, Taga R, Kukreja RC, Hess ML, Ito H (1988): The effect of oxygen free radicals on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum. Mol Pharmacol 34:388–394.

    Google Scholar 

  • Okabe E, Sugihara M, Tanaka K, Sasaki H, Ito H (1989a): Calmodulin and free oxygen radicals interaction with steady state-state calcium accumulation and passive calcium permeability of cardiac sarcoplasmic reticulum. J Pharmacol Exper Ther 250:286–292.

    Google Scholar 

  • Okabe E, Fujimaki R, Murayama M, Ito H (1989b): Possible mechanism responsible for mechanical dysfunction of ischemic myocardium: a role of oxygen free radicals. Jpn Circ J 53:1132–1137.

    Article  Google Scholar 

  • Pallandi RT, Perry MA, Campbell TJ (1987): Proarrhythmic effects of an oxygen-derived free radical generating system on action potentials recorded from guinea pig ventricular myocardium: A possible cause of reperfusion-induced arrhythmias. Circ Res 61:50–54.

    Article  Google Scholar 

  • Paul RJ, Hardin CD, Raeymaekers L, Wuytack F, Casteels R (1989): Preferential suport of Ca2+ uptake in smooth muscle plasma membrane vesicles by an endogenous glycolytic cascade. FASEB J 3:2298–2301.

    Google Scholar 

  • Pike MM, Kitakaze M, Marban E (1990): 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 259:H1767–H1773.

    Google Scholar 

  • Pogwizd SM, Corr PB (1987): Electrophysiologic mechanisms underlying arrhythmias due to a reperfusion of ischemic myocardium. Circulation 76:404–426.

    Article  Google Scholar 

  • Przyklenk K, Kloner RA (1989): “Reperfusion injury” by oxygen-derived free radicals? Effect of superoxide dismutase + catalase, given at time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature and regional myocardial blood flow. Circ Res 64:86–96.

    Article  Google Scholar 

  • Reeves JP, Bailey CA, Hale CC (1986): Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 261:4948–4955.

    Google Scholar 

  • Richter C, Frei B (1987): Ca2+ release from mitochondria induced by prooxidants. Free Rod Biol Med 4:365–375.

    Article  Google Scholar 

  • Rowe GT, Manson NH, Caplan M, Hess ML (1983): Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Circ Res 53:584–591.

    Article  Google Scholar 

  • Shi ZQ, Davison AJ, Tibbits GF (1989): Effects of active oxygen generated by DDT/Fe2+ on cardiac Na+/Ca2+ exchange and membrane permeability to Ca2+. J Mol Cell Cardiol 21:1009–1016.

    Article  Google Scholar 

  • Shlafer M, Myers CL, Adkins S (1987): Miochondrial hydrogen peroxide gener ation and activities of glutathione peroxidase and superoxide dismutase following global ischemia. J Mol Cell Cardiol 19:1195–1206.

    Article  Google Scholar 

  • Steenbergen C, Murphy E, Levy L, London RE (1987): Elevation in cystolic free calcium contraction early in mitochondrial ischemia in perfused rat heart. Circ Res 60:700–707.

    Article  Google Scholar 

  • Tanaka M, Stoler RC, FitzHarris GP, Jennings RB, Reimer KA (1990): Evidence against the “early protection-delayed death” hypothesis of superoxide dismutase therapy in experimental myocardial infarction. Circ Res 67:636–644.

    Article  Google Scholar 

  • Tarr M, Valenzeno DP (1991): Modification of cardiac ionic currents by photo-sensitizer-generated reactive oxygen. J Molec Cell Cardiol 23:639–649.

    Article  Google Scholar 

  • Thompson JA, Hess ML (1986): The oxygen free radical system: a fundamental mechanism in the production of myocardial necrosis. Prog Cardiovasc Dis 28:449–462.

    Article  Google Scholar 

  • Ventura C, Guarnieri C, Caldarera CM (1985): Inhibitory effect of superoxide radicals on cardiac myofibrillar ATPase activity. J Biochem 34:267–274.

    Google Scholar 

  • Weiss JN, Hiltbrand B (1985): Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 75:436–447.

    Article  Google Scholar 

  • Weiss SJ (1989): Tissue destruction by neutrophils. N Eng J Med 320:365–376.

    Article  Google Scholar 

  • Yamada M, Hearse DJ, Curtis MJ (1990): Reperfusion and readmission of oxygen. Circ Res 67:1211–1224.

    Article  Google Scholar 

  • Zweier JL, Flaherty JT, Weisfeldt ML (1987): Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sei USA 84:1404–1407.

    Article  Google Scholar 

  • Zweier JL, Kuppusamy P, Williams R, Rayburn BK, Smith D, Weisfeldt ML, Flaherty JT (1989): Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem 264:18890–18895.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiss, J.N., Goldhaber, J.I., Ji, S. (1993). Oxygen Free Radicals in the Pathophysiology of Myocardial Ischemia/Reperfusion. In: Tarr, M., Samson, F. (eds) Oxygen Free Radicals in Tissue Damage. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-9840-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9840-4_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-9842-8

  • Online ISBN: 978-1-4615-9840-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics