Skip to main content

Contributions of the Physical Properties of Neuroprotective Agents to their Efficacy as Inhibitors of Lipid Peroxidation

  • Chapter
Oxygen Free Radicals in Tissue Damage

Abstract

The chemistry and role of oxygen radicals and lipid peroxidation in brain damage has been extensively reviewed (Aust et al., 1985; Halliwell and Gutteridge, 1989; Siesjo et al., 1989). Collectively, the literature implicates oxygen radicals and the process of lipid peroxidation in central nervous system (CNS) tissue damage resulting from head and spinal cord injury, trauma, inflammation, and ischemic cerebrovascular disorders (Braughler and Hall, 1989). A causative role for oxygen radicals has also been suggested for other human diseases including cancer, multiple sclerosis, Parkinson’s disease, autoimmune diseases, senile dementia and the aging process (Gutteridge, 1987), and atherosclerosis (Henning and Chow, 1988; Henry, 1991). Accordingly, current drug research includes design and development of neuroprotective agents with appropriate antioxidant chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander JS, Hechtman HB, Shepro D (1988): Phalloidin enhances endothelial barrier function and reduces inflammatory permeability in vitro. Microvasc Res 35:308–315.

    Article  Google Scholar 

  • Audus KL, Guillot FL, Braughler JM (1991): Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells. Free Rad Biol Med 11:361–371.

    Article  Google Scholar 

  • Aust SD, Morehouse LA, Thomas CE (1985): Role of metals in oxygen radical reactions. J Free Rad Biol Med 1:3–25.

    Article  Google Scholar 

  • Bangham AD, Standish MM, Weissman G (1965): The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 13:253–259.

    Article  Google Scholar 

  • Battaini F, Govoni S, Trabucchi M, Paoletti R (1988): Calcium antagonists in tissue protection. Pharmacol Ther 39:385–388.

    Article  Google Scholar 

  • Benveniste H (1991): The excitotoxin hypothesis in relation to cerebral ischemia. Cerebr Blood Flow Metab 3:213–245.

    Google Scholar 

  • Bisby RH, Birch JS (1989): A time-resolved fluorescence anisotropy study of bilayer membranes containing α-tocopherol. Biochem Biophys Res Commun 158:386–391.

    Article  Google Scholar 

  • Braughler JM (1985): Lipid peroxidation-induced inhibition of gamma-aminobu-tyric acid uptake in rat brain synaptosomes: Protection by glucocorticoids. J Neurochem 44:1282–1288.

    Article  Google Scholar 

  • Braughler JM, Hall ED (1989): Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6:289–301.

    Article  Google Scholar 

  • Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987): Novel 21-amino steroids as potent inhibitors or iron-dependent lipid peroxidation. J Biol Chem 262:10438–10440.

    Google Scholar 

  • Braughler JM, Chase RL, Neff GL, Day JS, Yonkers PA, Hall ED, Sethy VH, Lahti RA (1988): A new 21-aminosteroid antioxidant lacking glucocorticoid activity stimulates ACTH secretion and blocks arachidonic acid release from mouse pituitary tumor (AtT-10) cells. J Pharmacol Exp Ther 244:423–427.

    Google Scholar 

  • Braughler JM, Hall ED, Jacobsen EJ, McCall JM, Means ED (1989): The 21-aminosteroids: potent inhibitors of lipid peroxidation for the treatment of central nervous system trauma and ischemia. Drugs of the Future 14:143–152.

    Google Scholar 

  • Buchan AM (1990): Do NMDA antagonists protect against cerebral ischemia: Are clinical trials warranted? Cerebr Blood Flow Metab 2:1–26.

    Google Scholar 

  • Buege JA, Aust SD (1958): Microsomal lipid peroxidation. Methods Enzymol 52:302–310.

    Article  Google Scholar 

  • Cranney M, Cundall RB, Jones GR, Richards JT, Thomas EW (1983): Fluorescence lifetime quenching studies on some interesting diphenylhexatriene membrane probes. Biochim Biophys Acta 735:418–425.

    Article  Google Scholar 

  • Demopoulos HB, Flamm ES, Pietronigro DD, Seligman MI (1972): Molecular aspects of membrane structure in cerebral edema. In: Steroids in Brain Edema ,Reulen HJ, Schurman K, eds. New York/Vienna: Springer-Verlag.

    Google Scholar 

  • Demopoulos HB, Flamm ES, Pietronigro DD, Seligman M (1980): The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl 492:91–120.

    Google Scholar 

  • Demopoulos HB, Flamm ES, Seligman ML, Pietronigro DD, Tomasula J, De-Crescito V (1982): Further studies on free-radical pathology in the major central nervous system disorders: Effect of very high doses of methylpred-nisolone on the functional outcome, morphology, and chemistry of experimental spinal cord impact injury. Can J Physiol Pharmacol 60:1415–1424.

    Article  Google Scholar 

  • Diplock AT (1982): The modulating influence of vitamin E in biological membrane unsaturated phospholipid metabolism. Acta Vitaminol Enzymol 4:303–309.

    Google Scholar 

  • Divakaran P, Wiggins RC (1987): Tocopherol in brain metabolism and disease: A review. Metab Brain Dis 2:1–12.

    Article  Google Scholar 

  • Dobretsov GE, Borschevskaya TA, Petrov VA, Vladimirov YA (1977): The increase of phospholipid bilayer rigidity after lipid peroxidation. FEBS Lett 84:125–128.

    Article  Google Scholar 

  • Engel LW, Prendergast FG (1981): Values for and significance of order parameters and “cone angles” of fluorophore rotation in lipid bilayers. Biochemistry 20:7338–7345.

    Article  Google Scholar 

  • Ernster L, Nordenbrand K, Orrenius S (1982): Microsomal lipid peroxidation: Mechanisms and some biomedical implications. In: Lipid Peroxidation in Biology and Medecine ,Yagi, K, ed. New York: Academic Press.

    Google Scholar 

  • Goncalves T, Carvalho AP, Oliveira CR (1991): Antioxidant effect of calcium antagonists on microsomal membranes isolated from different brain areas.Eur J Pharmacol 204:315–322.

    Article  Google Scholar 

  • Gutteridge JMC (1987): The role of oxygen radicals in tissue damage and ageing. Pharm J 239:401–406.

    Google Scholar 

  • Hall ED, Braughler JM (1989): Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad Biol Med 6:303–313.

    Article  Google Scholar 

  • Hall ED, McCall JM, Chase RL, Yonkers PA, Braughler JM (1987): A nongluco-corticoid steroid analog of methylprednisolone duplicates its high-dose pharmacology in models of central nervous system trauma and neuronal membrane damage. J Pharmacol Exp Ther 242:137–142.

    Google Scholar 

  • Hall ED, Pazara KE, Braughler JM (1990): Nonsteroidal lazaroid U78517F in models of focal and global ischemia. Stroke 21(supp III):83–87.

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1986): Oxygen free radicals and iron in relation to biology and medecine: some problems and concepts. Arch Biochem Biophys 246:501–514.

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989): Free radicals in biology and medecine, 2nd ed. Oxford: Clarendon Press.

    Google Scholar 

  • Harris RA, Bruno P (1985): Membrane disordering by anesthetic drugs: relationship to synaptosomal sodium and calcium fluxes. J Neurochem 44:1274–1281.

    Article  Google Scholar 

  • Haun SE, Kirsch JR, Helfaer MA, Kubos KL, Traystman RJ (1991): Polyethylene glycol-conjugated superoxide dismutase fails to augment brain superoxide dismutase activity in piglets. Stroke 22:655–659.

    Article  Google Scholar 

  • Henning B, Chow CK (1988): Lipid peroxidation and endothelial cell injury: Implications in athersclerosis. Free Rad Biol Med 4:99–106.

    Article  Google Scholar 

  • Henry PD (1991): Antiperoxidative actions of calcium antagonists and atherogenesis. J Cardiovasc Pharmacol 18(suppl I):S6–S10.

    Google Scholar 

  • Inauen W, Payne DK, Kvietys PR, Granger DN (1990): Hypoxia/Reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals. Free Rad Biol Med 9:219–223.

    Article  Google Scholar 

  • Ivanov II (1985): A relay model of lipid peroxidation in biological membranes. J Free Rad Biol Med 1:247–253.

    Article  Google Scholar 

  • Janero DR, Burghardt B (1989): Antiperoxidant effect of dihydropyridine calcium antagonists. Biochem Pharmacol 38:4344–4348.

    Article  Google Scholar 

  • Janero DR, Burghardt B, Lopez R (1988): Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists. Biochem Pharmacol 37:4197–4203.

    Article  Google Scholar 

  • Kaneko T, Nakano S, Matsuo M (1991): Protective effect of vitamin E on linoleic acid hydroperoxide-induced injury to human endothelial cells. Lipids 26:345–348.

    Article  Google Scholar 

  • Kiss C, Balazs M, Keri-Fulop I (1990): Dexamethasone decreases membrane fluidity of leukemia cells. Leukemia Res 14:221–225.

    Article  Google Scholar 

  • Konat G, Wiggins RC (1985): Effects of reactive oxygen species on myelin membrane proteins. J Neurochem 45:1113–1118.

    Article  Google Scholar 

  • Konat G, Gantt G, Gorman A, Wiggins RC (1986): Peroxidative aggregation of myelin membrane proteins. Metab Brain Dis 1:177–186.

    Article  Google Scholar 

  • Koster JF, Slee RG (1980): Lipid peroxidation of rat liver microsomes. Biochim Biophys Acta 620:489–499.

    Article  Google Scholar 

  • Leibovitz ME, Johnson MC (1971): Relation of lipid peroxidation to loss of cations trapped in liposomes. J Lipid Res 12:662–670.

    Google Scholar 

  • Mak IT, Freedman AM, Dickens BF, Weglicki WB (1990): Protective effects of sulfhydryl-containing angiotensin converting enzyme inhibitors against free radical injury in endothelial cells. Biochem Pharmacol 40:2169–1275.

    Article  Google Scholar 

  • Massey JB, She HS, Pownall HJ (1982): Interaction of vitamin E with saturated phospholipid bilayers. Biochem Biophys Res Commun 106: 842–847.

    Article  Google Scholar 

  • Mead JF (1976): Free radical mechanisms of lipid damage and consequences for cellular membranes. In: Free radicals in biology ,vol. 1, Pryor WA, ed. New York: Academic Press.

    Google Scholar 

  • Mentz P, Giebler C, Forster W (1980): Evidence for a direct inhibitory effect of glucocorticoids on the activity of phospholipase A2 as a further possible mechanism of some actions of steroidal anti-inflammatory drugs. Pharmacol Res Commun 12:817–827.

    Article  Google Scholar 

  • Naylor WG (1983): The role of calcium in myocardial ischemia and cell death. In: Calcium channel blocking agents in the treatment of cardiovascular disorders ,Stone PH, Antman EM, eds. Mount Kisco, NY: Futura Publishing.

    Google Scholar 

  • Ohyashiki T, Ushiro H, Mohri T (1986): Effects of α-tocopherol on the lipid peroxidation and fluidity of porcine intestinal brush-border membranes. Biochim Biophys Acta 858:294–300.

    Article  Google Scholar 

  • Palozza P, Krinsky NI (1991): The inhibition of radical-initiated peroxidation of microsomal lipids by both α-tocopherol and β-carotene. Free Rad Biol Med 11:407–414.

    Article  Google Scholar 

  • Parker NB, Berger EM, Curtis WE, Linas SL, Repine JE (1985): Hydrogen peroxide causes dimethylthiourea consumption while hydroxyl radical causes dimethylsulfoxide consumption in vitro. J Free Rad Biol Med 1:415–419.

    Article  Google Scholar 

  • Patel JM, Sekharam M, Block ER (1991): Vitamin E distribution and modulation of the physical state and function of pulmonary endothelial cell membranes. Exp Lung Res 17:707–723.

    Article  Google Scholar 

  • Phillips PG, Lum H, Malik AB, Tsan M-F (1989): Phallacidin prevents thrombin-induced increases in endothelial permeability to albumin. Am J Physiol 257:C562–C567.

    Google Scholar 

  • Pottel H, van der Meer W, Herreman W (1983): Correlation between the order parameter and the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and an evaluation of membrane fluidity. Biochim Biophys Acta 730:181–186.

    Article  Google Scholar 

  • Prendergast FG, Haugland RP, Callahan PJ (1981): l-[4-(Trimethylamino)phenyl]-6-phenyl hexa-1,3,5-triene: Synthesis, fluorescence properties and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338.

    Article  Google Scholar 

  • Raub TJ, Ho NFH, Barsuhn CL (1991): Transcellular permeability of a highly lipophilic, protein bound antioxidant via lipid bilayer diffusion in a cell culture model. Pharm Res 8:S–128.

    Google Scholar 

  • Robak J, Duniec Z (1986): Membrane activity, antioxidant, antiaggregatory, and antihemolytic properties of four calcium channel blockers. Pharmacol Res Commun 18:1107–1117.

    Article  Google Scholar 

  • Roy RS, McCord JM (1983): Superoxide and ischemia: Conversion of xanthine dehydrogenase to xanthine oxidase. In: Oxy radicals and their scavenger systems ,Greenwald R, Cohen G, eds. New York: Elsevier Science.

    Google Scholar 

  • Shapiro HM (1985): Barbiturates in brain ischaemia. Br J Anaesth 57:82–95.

    Article  Google Scholar 

  • Sheridan NP, Block ER (1988): Plasma membrane fluidity measurements in intact endothelial cells: Effect of hyperoxia on fluorescence anisotropies of 1-[4-(trimethylamino)phenyl]-6-phenyl hexatriene. J Cell Physiol 134:117–134.

    Article  Google Scholar 

  • Shertzer HG, Bannenberg GL, Rundgren M, Moldeus P (1991): Relationship of membrane fluidity, chemoprotection, and the intrinsic toxicity of butylated hydroxytoluene. Biochem Pharmacol 42:1587–1593.

    Article  Google Scholar 

  • Siesjo BK, Agardh C-D, Bengtsson F (1989): Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211.

    Google Scholar 

  • Sklar LA (1984): Fluorescence polarization studies of membrane fluidity: Where do we go from here? In: Biomembranes ,Morris K, Manson LA, eds. New York: Plenum Press.

    Google Scholar 

  • Smolen JE, Shohet SB (1974): Permeability changes induced by peroxidation in liposomes prepared from human erythrocyte lipids. J Lipid Res 15:273–280.

    Google Scholar 

  • Spetzler RT, Hadley MN (1989): Protection against cerebral ischemia: The role of barbiturates. Cerebrovasc Brain Metab Rev 1:212–229.

    Google Scholar 

  • Steiner M (1981): Vitamin E changes the membrane fluidity of human platelets. Biochim Biophys Acta 640:100–105.

    Article  Google Scholar 

  • Tappel AL (1975): Lipid peroxidation and fluorescent molecular damage to membranes. In: Pathobiology of cell membranes ,Vol 1, Trump BF, Arstila AU, eds. New York: Academic Press.

    Google Scholar 

  • Tappel AL (1978): Protection against free radical lipid peroxidation reactions. Adv Exp Med Biol 97:111–131.

    Google Scholar 

  • van Blitterswijk WJ, van Hooven RP, van der Meer BW (1981): Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim Biophys Acta 644:323–332.

    Article  Google Scholar 

  • van Ginkel G, van Langen H, Levine YK (1989): The membrane fluidity concept revisited by polarized fluorescence spectroscopy on different model membranes containing unsaturated lipids and sterols. Biochimie 71:23–32.

    Article  Google Scholar 

  • Young W, Ramm ES (1982): Effects of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57:667–673.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Audus, K.L. (1993). Contributions of the Physical Properties of Neuroprotective Agents to their Efficacy as Inhibitors of Lipid Peroxidation. In: Tarr, M., Samson, F. (eds) Oxygen Free Radicals in Tissue Damage. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-9840-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9840-4_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-9842-8

  • Online ISBN: 978-1-4615-9840-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics