Skip to main content

Abstract

The spin restriction predisposes dioxygen to a univalent pathway of reduction. Superoxide (O -2 ), the first intermediate encountered on this univalent pathway, is consequently a commonly encountered product of dioxygen reduction. The finding that O -2 is produced by some enzymes and is efficiently scavenged by others (McCord and Fridovich, 1968, 1969) led to the view that O -2 is an agent of oxygen toxicity. In this view the superoxide dismutases (SODs), which catalytically scavenge O -2 , serve a defensive role (McCord et al., 1971), much as do catalases vís a vís H2O2. Given the early association of O -2 with radiation chemistry and its extensive study by pulse radiolysis (Czapski, 1971), the biological relevance of O -2 was not easily accepted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman R, Saul RL, Ames BN (1988): Oxidative damage to DNA: relation to species metabolic rate and lifespan. Proc Natl Acad Sci USA 86:2706–2708.

    Article  Google Scholar 

  • Archibald FS, Fridovich I (1981a): Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol 145:442–451.

    Google Scholar 

  • Archibald FS, Fridovich I (1981b): Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936.

    Google Scholar 

  • Asami S, Akazawa T (1977): Enzymic formation of glycollate in chromatium. Role of superoxide radical in a transketolase-type mechanism. Biochemistry 16:2201–2207.

    Article  Google Scholar 

  • Bagley AC, Krall J, Lynch RE (1986): Superoxide mediates the toxicity of paraquat for Chinese hamster ovary cells. Proc Natl Acad Sci USA 83:3189–3193.

    Article  Google Scholar 

  • Bloch CA, Ausubel FM (1986): Paraquat-mediated selection for mutations in the manganese-superoxide dismutase gene sodA. J Bacteriol 168:795–798.

    Google Scholar 

  • Bowler C, Alliotte T, Van den Bulcke M, Bauw G, Vanderkerkhove J, Van Montagu M, Inze D (1989): A plant manganese superoxide dismutase is efficiently imported and correctly processed by yeast mitochondria. Proc Nat Acad Sci USA 86:3237–3241.

    Article  Google Scholar 

  • Bowler C, Van Kaer L, Van Camp W, Van Montagu M, Inze D, Dhaese P (1990): Characterization of Bacillus stearothermophilus manganese superoxide dismutase and its ability to complement copper/zinc superoxide dismutase deficiency in Saccharomyces cerevisiae. J Bacteriol 172:1539–1546.

    Google Scholar 

  • Brawn K, Fridovich I (1981): Dan strand scission by enzymically-generated oxygen radicals. Arch Biochem Biophys 206:414–419.

    Article  Google Scholar 

  • Carlioz A, Touati D (1986): Isolation of superoxide dismutase mutants in Es cherichia coli: is superoxide dismutase strictly necessary for aerobic life?EMBO J 5:623–630.

    Google Scholar 

  • Cathcart R, Schwiers E, Saul RL, Ames BN (1984): Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci USA 81:5633–5637.

    Article  Google Scholar 

  • Curnutte JT, Kanovsky ML, Babior BM (1976): Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement. J Clin Invest 57:1059–1067.

    Article  Google Scholar 

  • Czapski G (1971): Radiation chemistry of oxygenated aqueous solutions. Annu Rev Phys Chem 22:171–208.

    Article  Google Scholar 

  • Czapski G (1984): On the use of hydroxyl radical scavengers in biological systems. Israel J Chem 24:29–32.

    Google Scholar 

  • Davies KJA, Lin SW (1988): Degradation of oxidatively-denatured proteins in Escherichia coli. Free Rad Biol Med 5:215–223.

    Article  Google Scholar 

  • Dizdaroglu M, Bergtold DS (1986): Characterization of free radical-induced base damage in DNA at biologically relevant levels. Anal Biochem 156:182–188.

    Article  Google Scholar 

  • Farr SB, D’Ari RD, Touati D (1986): Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci USA 83:8268–8272.

    Article  Google Scholar 

  • Freeman B, Young SL, Crapo J (1983): Liposome-mediated augmentation of superoxide dismutase in endothelial cells prevents oxygen injury. J Biol Chem 258:12534–12542.

    Google Scholar 

  • Gardner PR, Fridovich I (1991a): Superoxide sensitivity of the Escherichia coli 6-phophogluconate dehydratase. J Biol Chem 266:1478–1483.

    Google Scholar 

  • Gardner PR, Fridovich I (1991b): Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 266: 19328–19333.

    Google Scholar 

  • Gebicki JM, Bielski BHJ (1981): Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of the linoleic acid. J Am Chem Soc 103:7020–7022.

    Article  Google Scholar 

  • Girotti AW, Thomas JP (1984): Damaging effects of oxygen radical on resealed erythrocyte ghosts. Biochem Biophys Res Commun 118:474–480.

    Article  Google Scholar 

  • Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990): Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 87:6181–6185.

    Article  Google Scholar 

  • Gregory EM, Fridovich I (1973a): The induction of superoxide dismutase by molecular oxygen. J Bacteriol 114:543–548.

    Google Scholar 

  • Gregory EM, Fridovich I (1973b): Oxygen toxicity and the superoxide dismutase. J Bacteriol 114:1193–1197.

    Google Scholar 

  • Gruber MY, Glick BR, Thompson JE (1990): Cloned manganese superoxide dismutase reduces oxidative stress in Escherichia coli and Anacystis nidulans. Proc Natl Acad Sci USA 87:2608–2612.

    Article  Google Scholar 

  • Hassan HM, Fridovich I (1977): Regulation of the synthesis of superoxide dismutase in Escherichia coli. Induction by methyl viologen. J Biol Chem 252:7767–7772.

    Google Scholar 

  • Hassan HM, Fridovich I (1978): Superoxide radical and the oxygen enhancement of the toxicity of paraquat in Escherichia coli. J Biol Chem 253:8143–8148.

    Google Scholar 

  • Hassan HM, Moody CS (1982): Superoxide dismutase protects against paraquat-mediated dioxygen toxicity and mutagenicity: studies in Salmonella typhi murium. Can J Physiol Pharmacol 60:1367–1373.

    Article  Google Scholar 

  • Imlay JA, Fridovich I (1991a): Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 266:6957–6965.

    Google Scholar 

  • Imlay JA, Fridovich I (1991b): Suppression of oxidative envelope damage by pseudoreversion of a superoxide dismutase-deficient mutant of Eschericia coli. J Bacteriol 174:953–961.

    Google Scholar 

  • Kaneko M, Leadon SA (1986): Production of thymine glycols in DNA by N-hydroxy-2-naphthylamine as detected by a monoclonal antibody. Cancer Res 46:71–75.

    Google Scholar 

  • Kuo CF, Mashino T, Fridovich I (1987): α, β-Dihydroxyisovalerate dehydratase:a superoxide sensitive enzyme. J Biol Chem 262:4724–4727.

    Google Scholar 

  • Lin WS, Armstrong DA, Lal M (1978): Effects of SOD, dithiothreitol and formate on the inactivation of papain by hydroxyl and by superoxide radicals in aerated solutions. Int J Radiat Biol 33:231–243.

    Article  Google Scholar 

  • Lin JJ, Sancar A (1989): A new mechanism for repairing oxidative damage to DNA: (A)BC exinuclease removes AP sites and thymine glycols from DNA. Biochemistry 28:7979–7984.

    Article  Google Scholar 

  • Liochev SI, Fridovich I (1990): Vanadate-stimulated oxidation of NAD (P) Hin the presence of biological membranes and other sources of O2. Arch BiochemBiophys 27:1–7.

    Article  Google Scholar 

  • Liochev SI, Fridovich I (1991): Effects of overproduction of superoxide dis-mutase on the toxicity of paraquat towards Escherichia coli. J Biol Chem 266:8747–8750.

    Google Scholar 

  • McCord JM, Fridovich I (1968): The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760.

    Google Scholar 

  • McCord JM, Fridovich I (1969): Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055.

    Google Scholar 

  • McCord JM, Keele BB Jr, Fridovich I (1971): An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci USA 68:1024–1027.

    Article  Google Scholar 

  • McCord JM, Russell WJ (1988): Superoxide inactivates creatine Phosphokinase during reperfusion of ischemic heart. UCLA Symp Mol Cell Biol New Ser 82:27–35.

    Google Scholar 

  • Moody CS, Hassan HM (1982): Mutagenicity of oxygen free radicals. Proc Natl Acad Sci USA 79:2855–2859.

    Article  Google Scholar 

  • Natvig DO, Imlay K, Touati O, Hallewell RA (1987): Human copper-zinc superoxide dismutase complements superoxide dismutase-deficient Escherichia coli mutants. J Biol Chem 262:14697–14701.

    Google Scholar 

  • Pacifici RE, Salo DC, Davies KJA (1989): Macrooxyproteinase (M. O. P.): a 670 kilodalton proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Rad Biol Med 7:521–536.

    Article  Google Scholar 

  • Richter C, Park JW, Ames BN (1988): Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467.

    Article  Google Scholar 

  • Scott MD, Meshnick SR, Eaton JW (1987): Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. J Biol Chem 262:3640–3645.

    Google Scholar 

  • Stadtman ER, Oliver CN, Levine RL, Fucci L, Rivatt AJ (1988): Implications of protein oxidation in protein turnover, aging and oxygen toxicity. Basic Life Sci 49:331–339.

    Google Scholar 

  • Thomas JP, Bachowski GJ, Girotti AW (1986): Inhibition of cell membrane lipid peroxidation by cadmium and zinc metallothioneins. Biochim Biophys Acta 884:448–461.

    Article  Google Scholar 

  • Touati D (1988): Molecular genetics of superoxide dismutases. Free Rad Biol Med 5:393–402.

    Article  Google Scholar 

  • Tsaneva IR, Weiss B (1990): SoxR, a locus governing a superoxide response regulon in Escherichia coli K12. J Bacteriol 172:4197–4205.

    Google Scholar 

  • Van Camp W, Bowler C, Villarroel R, Tsang EWT, Van Montagu M, Inze D (1990): Characterization of iron superoxide dismutase from plants obtained by genetic complementation in Escherichia coli. Proc Natl Acad Sci USA 87:9903–9907.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fridovich, I. (1993). Getting Along With Oxygen. In: Tarr, M., Samson, F. (eds) Oxygen Free Radicals in Tissue Damage. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-9840-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9840-4_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-9842-8

  • Online ISBN: 978-1-4615-9840-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics