Skip to main content

Estimation de L’erreur Dans des Problemes de Dirichlet ou Apparait un Terme Etrange

  • Chapter
Partial Differential Equations and the Calculus of Variations

Résumé

On considère le problème de Dirichlet

$$ - \Delta {u^\varepsilon } = f\;{\rm{dans}}\;{\Omega ^\varepsilon },\;{u^\varepsilon } = 0\;{\rm{sur}}\;\partial {\Omega ^\varepsilon }, $$

où Ωε est obtenu en retirant à Ω de nombreux petits trous, répartis périodiquement avec une période 2ε dans les directions des axes, chaque trou étant obtenu à partir d’un trou modèle par une homothétie de rapport εN/(N − 2). Dans le problème limite

$$ - \Delta u + \mu u = f\;{\rm{dans}}\;\Omega ,\;u = 0\;{\rm{sur}}\;\partial \Omega ,$$

apparaît un «terme étrange» d’ordre 0.

Désignant par p ε le potentiel capacitaire de chacun de ces petits trous par rapport à la boule de rayon ε qui l’entoure, nous montrons l’estimation d’erreur

$${\left\| {{u^\varepsilon } - (1 - {p^\varepsilon })u} \right\|_{H_0^1(\Omega )}} \le {\rm{cste}}\;\varepsilon .$$

Ce résultat est démontré en deux étapes: la première est une estimation d’erreur abstraite, obtenue dans un cadre qui généralise la situation géométrique considérée ci-dessus; la deuxième consiste à estimer explicitement certaines quantités, telles que \({\left\| {{p^\varepsilon }} \right\|_{{H^1}(\Omega )}}\), que apparaissent dans l’estimation d’erreur abstraite.

Abstract

Consider the Dirichlet problem

$$ - \Delta {u^\varepsilon } = f\;{\rm{in}}\;{\Omega ^\varepsilon },\;{u^\varepsilon } = 0\;{\rm{on}}\;\partial {\Omega ^\varepsilon },$$

where Ωε is obtained by removing from Ω many small holes T ε i , periodically distributed with a period 2ε in the directions of the axes, each of the holes T ε i being obtained from a model hole by reducing it at the size εN/(N − 2). The solutions u ε converge weakly to the solution of

$$ - \Delta u + \mu u = f\;{\rm{in}}\;\Omega ,\;u = 0\;{\rm{on}}\;\partial \Omega ,$$

where a zero-order term surprisingly appears.

Let p ε be the capacity potential of each small hole T ε i in the ball of radius ε with the same center. We prove in this paper the following error estimate

$${\left\| {{u^\varepsilon } - (1 - {p^\varepsilon })u} \right\|_{H_0^1(\Omega )}} \le {\rm{cst}}\;\varepsilon .$$

This result is proved in two steps. In the first, an abstract error estimate is obtained in a framework which generalizes the geometrical situation described above. The second step consists in estimating explicitly quantities like \( {\left\| {{p^\varepsilon }} \right\|_{{H^1}(\Omega )}}\), which appear in the abstract error estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. H.Attouch, C.Picard, Asymptotic analysis of variational problems with constraints of obstacle type, J. Funct. Anal. 15 (1983), 329–386.

    Article  MathSciNet  Google Scholar 

  2. H.Brézis, F.E.Browder, Some properties of higher order Sobolev spaces, J. Math. pures et appl. 61 (1982), 245–259.

    MATH  Google Scholar 

  3. L.Carbone, F.Colombini, On convergence of functionals with unilateral constraints, J. Math. pures et appl. 59 (1980), 465–500.

    MathSciNet  MATH  Google Scholar 

  4. G.Choquet, Potentiels sur un ensemble de capacité nulle. Suites de potentiels, C.R. Acad. Sc. Paris 244 (1957), 1707–1710.

    MathSciNet  MATH  Google Scholar 

  5. D.Cioranescu, L.Hedberg, F.Murat, Le bilaplacien et le tapis du fakir, (1983), non publié.

    Google Scholar 

  6. D.Cioranescu, F.Murat, Un terme étrange venu d’ailleurs I & II, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. II & III, ed. by H. Brézis & J.L. Lions, Res. Notes in Math. 60 & 70, Pitman, London, (1982), 98–138 & 154–178.

    Google Scholar 

  7. J.Deny, Les potentiels d’énergie finie, Acta Math. 82 (1950), 107–183.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.Dal Maso, Asymptotic behaviour of minimum problems with bilateral obstacles, Ann. Mat. pura ed appl. 129 (1981), 327–366.

    Article  Google Scholar 

  9. G.Dal Maso, Limits of minimum problems for general integral functionals with unilateral obstacles, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 74 (1983), 56–61.

    Google Scholar 

  10. G.Dal Maso, Γ-convergence and μ-capacities, Ann. Sc. Norm. Sup. Pisa 14 (1987), 423–464.

    MATH  Google Scholar 

  11. G.Dal Maso, A.Defranceschi, Limits of nonlinear Dirichlet problems in varying domains, Preprint SISSA, Trieste, (1987).

    Google Scholar 

  12. G.Dal Maso, P.Longo, Γ-limits of obstacles, Ann. Mat. pura ed appl. 128 (1981), 1–50.

    Article  MATH  Google Scholar 

  13. G.Dal Maso, G.Paderni, Variational inequalities for the biharmonic operator with variable obstacles, Preprint SISSA, Trieste, (1987).

    Google Scholar 

  14. E.De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dellarea, Rendiconti di Mat. 8 (1975), 277–294.

    MATH  Google Scholar 

  15. E.De Giorgi, Convergence problems for functionals and operators, in Proceedings of the international meeting on recent methods in non linear analysis, (Rome, may 1978), ed. by E. De Giorgi, E. Magenes, U. Mosco, Pitagora Editrice, Bologna, (1979), 131–188.

    Google Scholar 

  16. E.De Giorgi, G-operators and Γ-convergence, in Proceedings of the International Congress of Mathematicians, (August 1983, Warszawa), P.W.N. Polish Scientific Publishers, Warszawa, & North-Holland, Amsterdam, (1984), 1175–1191.

    Google Scholar 

  17. E.De Giorgi, G.Dal Maso, P.Longo, Γ-limiti di ostacoli, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980), 481–487.

    MathSciNet  MATH  Google Scholar 

  18. E.De Giorgi, T.Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Mat. Fis. Natur. 58 (1975), 842–850, & Rend. Sem. Mat. Brescia 3 (1979), 63–101.

    MATH  Google Scholar 

  19. R.Figari, E.Orlandi, S.Teta, The Laplacian in regions with many small obstacles: fluctuations around the limit operator, J. Stat. Phys. 41 (1985), 465–488.

    Article  MathSciNet  MATH  Google Scholar 

  20. R.Figari, G.Papanicolaou, J.Rubinstein, The point interaction approximation for diffusion in regions with many small holes, in Stochastic Methods in Biology, ed. by M. Kimura et al., Lecture Notes in Biomathematics 70, Springer-Verlag, Berlin, (1987), 202–220.

    Chapter  Google Scholar 

  21. L.Hedberg, Spectral synthesis in Sobolev spaces and uniqueness of solutions of the Dirichlet problem, Acta Math. 147 (1981), 237–264.

    Article  MathSciNet  MATH  Google Scholar 

  22. E.Ja.Hrouslov, The method of orthogonal projections and the Dirichlet problem in domains with a fine-grained boundary, Math. USSRS b. 17 (1972), 37–59.

    Article  Google Scholar 

  23. E.Ja.Hrouslov, The first boundary value problem in domains with a complicated boundary for higher order equations, Math. USSR Sb. 32 (1977), 535–549.

    Article  Google Scholar 

  24. M.Kac, Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math. 4 (1974), 511–538.

    Article  MathSciNet  MATH  Google Scholar 

  25. H.Kacimi, Homogénéisation de problèmes de Dirichlet avec de petits trous, Thèse 3ème cycle, Université Paris VI, (1987).

    Google Scholar 

  26. R.V.Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness. II: a convergence proof, Quat. Appl. Math., 43 (1985), 1–22.

    MathSciNet  MATH  Google Scholar 

  27. J.L.Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Math. 323, Springer-Verlag, Berlin, (1973).

    MATH  Google Scholar 

  28. V.A.Marcenko, E. Ja. Hrouslov, Problèmes aux limites dans des domaines avec frontières finement granulées, (en russe), Naukova Dumka, Kiev, (1974).

    Google Scholar 

  29. S.Ozawa, On an elaboration of M. Kac’s theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles, Comm. Math. Phys. 91 (1983), 473–487.

    Article  MathSciNet  MATH  Google Scholar 

  30. S.Ozawa, Random media and eigenvalues of the Laplacian, Comm. Math. Phys. 94 (1984), 421–437.

    Article  MathSciNet  MATH  Google Scholar 

  31. S.Ozawa, Fluctuation of spectra in random media, in Proceedings of the Taniguchi Symposium “Probabilistic Methods in Mathematical Physics”, ed. by N. Ikeda & K. Ito, Kinokuniya, Tokyo, (1987), 335–361.

    Google Scholar 

  32. G.C.Papanicolaou, S.R.S.Varadhan, Diffusion in regions with many small holes, in Stochastic differential systems, filtering and control, Proceedings of the IFIP WG 7/1 working conference, (Vilnius, USSR, 1978), ed. by B. Grigelionis, Lecture Notes in Control and Information Sciences 25, Springer-Verlag, (1980), 190–206.

    Google Scholar 

  33. J.Rauch, M.Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975), 27–59.

    Article  MathSciNet  MATH  Google Scholar 

  34. E.Sanchez-Palencia, Boundary value problems containing perforated walls, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. III, ed. by H. Brézis & J.L. Lions, Research Notes in Maths 70, Pitman, London, (1982), 309–325.

    Google Scholar 

  35. L.Tartar, Cours Peccot, Collège de France (mars 1977), partiellement rédigé dans: F. Murat, H-convergence, Séminaire d’analyse fonctionnelle et numérique de l’Université d’Alger, (1977–78), ronéoté, 34 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dédié à Ennio De Giorgi pour son soixantième anniversaire

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kacimi, H., Murat, F. (1989). Estimation de L’erreur Dans des Problemes de Dirichlet ou Apparait un Terme Etrange. In: Colombini, F., Marino, A., Modica, L., Spagnolo, S. (eds) Partial Differential Equations and the Calculus of Variations. Progress in Nonlinear Differential Equations and Their Applications, vol 1. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-9831-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9831-2_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-9833-6

  • Online ISBN: 978-1-4615-9831-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics