Skip to main content

Some Remarks on the Well-Posedness of the Cauchy Problem in Gevrey Spaces

  • Chapter
Partial Differential Equations and the Calculus of Variations

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 1))

  • 579 Accesses

Abstract

In [2] (1) F.Colombini, E.De Giorgi, S.Spagnolo proved that the Cauchy problem

$$ \left\{ {\matrix{ {\partial _{tt}^2u{\rm{ - }}\sum\nolimits_{i,j = 1 }^n {{c_{ij}}\left( t \right)\partial _{xixj}^2u = 0} } & {\left( {t,x} \right){\rm{ }} \in {\rm{]0,}}T[ \times {R^n}} \cr {u\left( {0,x} \right){\rm{ = }}{u_0}\left( x \right)} & {x \in {R^n}} \cr {{\partial _t}u\left( {0,x} \right){\rm{ = }}{u_1}\left( x \right)} & {x \in {R^n}} \cr } } \right. $$
((1.1))

where c ij are real integrable functions on [0,T] such that for some constant a 0 > 0

$$\sum\limits_{i,j = 1}^n {{c_{ij}}\left( t \right)} {\xi _i}{\xi _j}{\rm{ }} \ge {\rm{ }}{{\rm{a}}_0}|\xi {|^2}{\rm{ , }}\xi \in {{\rm{R}}^n},$$

is well posed in the Gevrey space ε {3}(R nx ), for s ∊ [1,1/(1 — X)[, X ]0,1[, if there exists c ≥ 0 such that

$$\int_O^T {|{c_{ij}}} (t + \tau ) - {c_{ij}}(t)|dt {\rm{ < }}C{\tau ^x},{\rm{ }}\tau {\rm{ > }}0{{\rm{ }}^{{\rm{(2)}}}}{\rm{.}}$$
((1.2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.Cicognani, The propagation of Gevrey singularities for some hyperbolic operators with coefficients Hölder continuous with respect to time, in Recent developments in hyperbolic equations Pitman Research Notes in Math. 183 (1988), 38–58.

    MathSciNet  Google Scholar 

  2. F.Colombini, E.De Giorgi, S.Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Norm. Sup. Pisa 6 (1979), 511–559.

    MATH  Google Scholar 

  3. M.V.Fedoryuk, Metod Perevala, Nauka, Mosca, 1977.

    Google Scholar 

  4. H.Komatsu, Irregularity of hyperbolic operators, Taniguchi Symp. HERT, Katata 1984, 155–179.

    Google Scholar 

  5. S.Mizokata, Microlocal energy method, Taniguchi Symp. HERT, Katata 1984, 193–233.

    Google Scholar 

  6. T.Nishitani, Sur les équations hyperboliques à coefficients höldériens en t et de classe de Gevrey en x, Bull. Sc. Math. 107 (1983), 113–138.

    MathSciNet  MATH  Google Scholar 

  7. V.P.Palamodov, Fourier transform of strongly increasing infinitely differentiate functions, (in russian) Trudy Mosk. Mat. Obsc. 11 (1962), 309–350.

    MathSciNet  MATH  Google Scholar 

  8. S.Spagnolo, Analytic and Gevrey well-posedness of the Cauchy problem for second order weakly hyperbolic equations with coefficients irregular in time, Taniguchi Symp. HERT, Katata 1984,363–380.

    Google Scholar 

  9. K.Taniguchi, Fourier integral operators in Gevrey class on Rn and the fundamental solution for a hyperbolic operator, Publ. RIMS Kyoto Univ. 20 (1984), 491–542.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Ennio De Giorgi on his sixtieth birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhauser Boston

About this chapter

Cite this chapter

Cattabriga, L. (1989). Some Remarks on the Well-Posedness of the Cauchy Problem in Gevrey Spaces. In: Colombini, F., Marino, A., Modica, L., Spagnolo, S. (eds) Partial Differential Equations and the Calculus of Variations. Progress in Nonlinear Differential Equations and Their Applications, vol 1. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9828-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9828-2_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9830-5

  • Online ISBN: 978-1-4615-9828-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics