Skip to main content

Phenylalanine Transport at the Human Blood-Brain Barrier

  • Chapter
Dietary Phenylalanine and Brain Function

Abstract

Phenylalanine transport through the brain capillary wall, i.e., the blood-brain barrier (BBB), is characterized by a very high affinity (low K m ) transport system in laboratory rats. To test whether phenylalanine transport at the human BBB is also mediated by a very high affinity (low K m ) transport system, brain capillaries were isolated from fresh autopsy human brain, as well as from fresh rat brain or from fresh or 42-hour postmortem rabbit brain. The results show that the K m values for phenylalanine transport are virtually identical at either the rat or human BBB. Therefore, the marked derangements in brain amino acid metabolism caused by hyperphenylalaninemia in rats may also occur in humans at comparable increases in blood phenylalanine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, A.E., and Avins, L. (1976). Lowering brain phenylalanine levels by giving other large neutral amino acids. Arch. Neurol. 33:686–686.

    Article  Google Scholar 

  • Binek-Singer, P., and Johnson, T.C. (1982). The effects of chronic hyperphenylala-ninaemia on mouse brain protein synthesis can be prevented by other amino acids. Biochem. J. 206:407–414.

    PubMed  CAS  Google Scholar 

  • Choi, T., and Pardridge, W.M. (1986). Phenylalanine transport at the human blood-brain barrier. Studies in isolated human brain capillaries. J. Biol. Chem. 261:6536–6541.

    PubMed  CAS  Google Scholar 

  • Comar, D., Saudubray, J.M., Duthilleul, A., Delforge, J., Maziere, M., Berger, G., Charpentier, C., Todd-Pokropek, A., with Crouze, M., and Depondt, E. (1981). Brain uptake of 11C-methionine in phenylketonuria. Eur. J. Pediatr. 136:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, K.R., Pardridge, W.M., and Rosenfeld, R.G. (1988). Human blood-brain barrier insulin-like growth factor (IGF) receptor. Metabolism 37:136–140.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J.D., and Faller, D.V. (1978). Neutral amino acids in the brain: changes in response to food ingestion. J. Neurochem. 30:1531–1538.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J.D., and Wurtman, R.J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178:414–416.

    Article  PubMed  CAS  Google Scholar 

  • Frey, G.H. (1976). Use of aspartame by apparently healthy children and adolescents. J. Toxicol. Environ. Health 2:401–415.

    Article  PubMed  CAS  Google Scholar 

  • Levy, H.L., and Waisbren, S.E. (1983). Effects of untreated maternal phenylketonuria and hyperphenylalaninemia on the fetus. N. Engl. J. Med. 309:1269–1274.

    Article  PubMed  CAS  Google Scholar 

  • Miller, L., Braun, L.D., Pardridge, W.M., and Oldendorf, W.H. (1985). Kinetic constants for blood-brain barrier amino acid transport in conscious rats. J. Neurochem. 45:1427–1432.

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf, W.H., Sisson, W.B., and Silverstein, A. (1971). Brain uptake of sele-nomethioine Se 75. II. Reduced brain uptake of selenomethionine Se 75 in phenylketonuria. Arch. Neurol. 24:524–528.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M. (1986). Potential effects of the dipeptide sweetener aspartame on the brain. In Wurtman, R.J., and Wurtman, J.J. (eds.), Nutrition and the brain, Volume 7. New York: Raven Press, pp. 199–241.

    Google Scholar 

  • Pardridge (1987): Phenylalanine transport at the human blood-brain barrier. In Kaufman, S. (ed.), Amino acids in health and disease: new perspectives. New York: Alan R. Liss, Inc., pp. 43–64.

    Google Scholar 

  • Pardridge, W.M., and Choi, T. (1986). Amino acid transport at the human blood-brain barrier. Fed. Proc. 45:2073–2078.

    PubMed  CAS  Google Scholar 

  • Pardridge, W.M., and Oldendorf, W.H. (1977): Transport of metabolic substrates through the blood-brain barrier. J. Neurochem. 28:5–12.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M., Eisenbergy J., and Yang, J. (1985). Human blood-brain barrier insulin receptor. J. Neurochem. 44:1771–1778.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M., Eisenberg, J., and Yang, J. (1987). Human blood-brain barrier transferrin receptor. Metabolism 36:892–895.

    Article  PubMed  CAS  Google Scholar 

  • Scriver, C.R., and Clow, C.L. (1980). Phenylketonuria: epitome of human biochemical genetics. N. Engl. J. Med. 303:1336–1342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Birkhäuser Boston

About this chapter

Cite this chapter

Pardridge, W.M. (1988). Phenylalanine Transport at the Human Blood-Brain Barrier. In: Wurtman, R.J., Ritter-Walker, E. (eds) Dietary Phenylalanine and Brain Function. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9821-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9821-3_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9823-7

  • Online ISBN: 978-1-4615-9821-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics