Skip to main content

Aspartame, Phenylalanine, and Seizures in Experimental Animals

  • Chapter
Book cover Dietary Phenylalanine and Brain Function

Abstract

An association has recently been proposed between seizure promotion and consumption of the phenylalanine-containing artificial sweetener aspartame. Since consumption of aspartame, unlike dietary protein, can elevate brain phenylalanine, and thus potentially inhibit the synthesis and release of neurotransmitters known to protect against seizure activity, we have studied the effects of aspartame and of its metabolic breakdown products (aspartic acid, methanol, and phenylalanine) on seizure activity, using two well-established experimental models, i.e., pen-tylenetetrazole and fluorothyl-induced seizures. The doses employed were chosen to produce changes in the plasma phenylalanine ratio which would mimic, in the mouse, the changes seen when humans consume moderate amounts of the sweetener. Mice receiving aspartame in doses of 1000 mg/kg or greater exhibited a significant lowering in the threshold to seizures induced by pentylenetetrazole. This response was mimicked by equimolar phenylalanine, but not by equimolar aspartic acid or methanol. Additionally, we tested the ability of tyrosine, a precursor of seizure-protecting catecholamines, to influence pentylenetetrazole-induced seizures. Tyrosine doses of 500 mg/kg or greater significantly elevated the seizure threshold in this model. Coadministration of tyrosine with either phenylalanine or aspartame prevented the deleterious effects of these compounds on the seizure threshold. Similarly, coadministration of the large neutral amino acid valine, which competes with phenylalanine for entry into the brain, also prevented the phenylalanine-induced changes. When phenylalanine or aspartame were administered prior to fluorothyl exposure, a significant decrease in the seizure threshold was also noted. Doses as low as 500 mg/kg were able to potentiate these seizures in immature mice. We conclude that in these commonly employed seizure models, aspartame, via its metabolic breakdown product phenylalanine, is capable of lowering the threshold to seizures. This may bear on the reported association between aspartame and seizures in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, I.M., and Corcoran, M.E. (1983). Facilitation of neocortical kindling by depletion of forebrain noradrenaline. Brain Res. 270:174–177.

    Article  PubMed  CAS  Google Scholar 

  • Altshuler, H.J., Killam, E.K., and Killam, K.F. (1976). Biogenic amines and the photomyoclonic syndrome in the baboon Papio papio. J. Pharmacol. Exp. Ther. 196:156–166.

    PubMed  CAS  Google Scholar 

  • Araki, H., Aihara, H., Watanabe, S., Ohta, H., Yamamoto, T., and Ueki, S. (1983). The role of noradrenergic and serotonergic systems in the hippocampal kindling effect. Jpn. J. Pharmacol. 33:57–64

    Article  PubMed  CAS  Google Scholar 

  • Arnold, P., Racine, R., and Wise, R. (1973). Effect of atropine, reserpine, 6-hydroxydopamine, and handling on seizure development in the rat. Exp. Neurol. 40:457–460.

    Article  PubMed  CAS  Google Scholar 

  • Boggan, W.O., and Seiden, L.S. (1971). Dopa reversal of reserpine enhancement of audiogenic seizure susceptibility in mice. Physiol. Behav. 6:215–217.

    Article  PubMed  CAS  Google Scholar 

  • Caballero, B., Mahon, B., Rohr, F., Levy, H., and Wurtman, R.J. (1986). Plasma amino acid levels after single dose aspartame consumption in phenylketonuria. J. Pediatr. 109:668–671.

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control. (1984). Evaluation of consumer complaints related to aspartame use. Morb. Mortal. Weekly Rep. 33:605–607.

    Google Scholar 

  • Chen, G., Ensor, C.R., and Bohner, B. (1968). Studies on drug effects on electrically induced extensor seizures and clinical implications. Arch. Int. Pharma-codyn. 172:183–218

    CAS  Google Scholar 

  • Conlay, L.C., Maher, T.J. and Wurtman, R.J. (1981). Tyrosine increases blood pressure in hypotensive rats. Science 212:559–560.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran, M.E., and Mason, S.T. (1980). Role of forebrain catecholamines in amygdaloid kindling. Brain Res. 190:473–484.

    Article  PubMed  CAS  Google Scholar 

  • Dailey, J.W., and Jobe, P.C. (1984). Effects of increments in the concentration of dopamine in the central nervous system on audiogenic seizures in DBA/2J mice. Neuropharmacology 23:1019–1024.

    Article  PubMed  CAS  Google Scholar 

  • Drake, M.E. (1986). Panic attacks and excessive aspartame ingestion. Lancet ii:631.

    Article  Google Scholar 

  • Ferguson, J.M. (1985). Interaction of aspartame and carbohydrates in an eating disorder patient. Am. J. Psychiatr. 142:271.

    Google Scholar 

  • Fernstrom, M.H., Volk, E.A., and Fernstrom, J.D. (1984). In vivo tyrosine hydroxylation in the diabetic rat retina: effect of tyrosine administration. Brain Res. 298:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, B.B. (1969). Amino acids and cerebral excitability. J. Neurochem. 16:701–706.

    Article  PubMed  CAS  Google Scholar 

  • Garattini, S. (1986). Aspartame, brain monoamines and neurochemical mediators. International Aspartame Workshop, November, Marbella, Spain.

    Google Scholar 

  • Jobe, P.C., Picchioni, A.L., and Chin, L. (1973). Effect of lithium carbonate and alpha-methyl-p-tyrosine on audiogenic seizure intensity. J. Pharm. Pharmacol. 25:830–831.

    Article  PubMed  CAS  Google Scholar 

  • Jobe, P.C., Ko, K.H., and Dailey, J.W. (1984). Abnormalities in norepinephrine turnover rate in the central nervous system of the genetically epilepsy-prone rat. Brain Res. 290:357–360.

    Article  PubMed  CAS  Google Scholar 

  • Jobe, P.C., Dailey, J.W., and Reigel, C.E. (1986). Noradrenergic and serotonergic determinants of seizure susceptibility and severity in genetically epilepsy-prone rats. Life Sci. 39:775–782.

    Article  PubMed  CAS  Google Scholar 

  • Johns, D.R. (1986): Migraine provoked by aspartame. N. Engl. J. Med. 315:456.

    Google Scholar 

  • Kilian, M., and Frey, H.H. (1973). Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12:681–692.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.C., and Kim, S.H. (1987). Studies on the effect of aspartame and lidocaine interaction in central nervous system of mice. Fed. Proc. 46:705.

    Google Scholar 

  • Kiritsy, P.J., and Maher, T.J. (1986). Acute effects of aspartame on systolic blood pressure in spontaneously hypertensive rats. J. Neural Transm. 66:121–128.

    Article  PubMed  CAS  Google Scholar 

  • Kleinrok, Z., Czuczwar, S., Wojcik, A., and Przegalinski, E. (1978). Brain dopamine and seizure susceptibility in mice. Pol. J. Pharmacol. Pharm. 30:513–519.

    PubMed  CAS  Google Scholar 

  • Lehnert, H., Reinstein, D.K., Trowbridge, B.W., and Wurtman, R.J. (1984). Neurochemical and behavior consequences of acute, uncontrollable stress: effect of dietary tyrosine. Brain Res. 303:215–223.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J., Westerberg, V., and Corcoran, M.E. (1987). Monoaminergic correlates of kindling. Brain Res. 403:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Litchfield, J.T. Jr., and Wilcoxon, F. (1949). A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 96:99–113.

    PubMed  CAS  Google Scholar 

  • Mclntyre, D.C., and Edson, N. (1981). Facilitation of amygdaloid kindling after norepinephrine depletion with 6-hydroxydopamine in rats. Exp. Neurol. 74:748–757.

    Article  Google Scholar 

  • McKenzie, G.M., and Soroko, F.E. (1972). The effects of apomorphine, (+)-amphetamine and L-dopa on maximal electroshock convulsions—a comparative study in the rat and mouse. J. Pharm. Pharmacol. 24:696–701.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie, G.M., and Soroko, F.E. (1973). Inhibition of the anticonvulsant activity of L-dopa by FLA-63, a dopamine-beta-hydroxylase inhibitor. J. Pharm. Pharmacol. 25:76–77.

    Article  PubMed  CAS  Google Scholar 

  • Melamed, E., Hefti, F., and Wurtman, R.J. (1980). Tyrosine administration increases striatal dopamine release in rats with partial nigrostriatal lesions. Proc. Natl. Acad. Sci. USA 77:4305–4309.

    Article  PubMed  CAS  Google Scholar 

  • Milner, J.D., Irie, K., and Wurtman, R.J. (1986). Effects of phenylalanine on the release of endogenous dopamine from rat striatal slices. J. Neurochem. 47:1444–1448.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu, T., Levitt, M., and Udenfriend, S. (1964). Tyrosine hydroxylase, the initial step in norepinephrine biosynthesis. J. Biol. Chem. 239:2910–2917.

    PubMed  CAS  Google Scholar 

  • Pinto, J.M.B. and Maher, T.J. (1988). Aspartame administration potentiates fluorothyl-and pentylenetetrazole-induced seizure in mice. Neuropharmacol. 27:51–55.

    Article  CAS  Google Scholar 

  • Rudzik, A.D., and Johnson, G.A. (1970). Effect of amphetamine and amphetamine analogs on convulsive thresholds. In Costa, E., and Garratini, S. (eds.), Amphetamines and related compounds. New York: Raven Press, p. 715.

    Google Scholar 

  • Schlesinger, K., Boggan, W., and Freedman, D.X. (1968). Genetics of audiogenic seizures. II. Effects of pharmacological manipulation of brain serotonin, norepinephrine and gamma-aminobutyric acid. Life Sci. 7:437–447

    Article  PubMed  CAS  Google Scholar 

  • Sved, A.F., Fernstrom, J.D., and Wurtman, R.J. (1979). Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously-hypertensive rats. Proc. Natl. Acad. Sci. USA 76:3511–3514.

    Article  PubMed  CAS  Google Scholar 

  • Thakore, K., and Crane, S.C. (1987). Blood pressure and regional brain tyrosine, norepinephrine and dopamine in spontaneously hypertensive rats fed aspartame or sucrose. Fed. Proc. 46:904.

    Google Scholar 

  • Walton, R.G. (1986). Seizure and mania after high intake of aspartame. Psycho-somatics 27:218–220.

    CAS  Google Scholar 

  • Wurtman, R.J. (1985). Aspartame: possible effect on seizure susceptibility. Lancet ii:1060.

    Google Scholar 

  • Yokogoshi, H., and Wurtman, R.J. (1986). Acute effects of oral or parenteral aspartame on catecholamine metabolism in various regions of rat brain. J. Nutr. 116:356–364.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Birkhäuser Boston

About this chapter

Cite this chapter

Pinto, J.M.B., Maher, T.J. (1988). Aspartame, Phenylalanine, and Seizures in Experimental Animals. In: Wurtman, R.J., Ritter-Walker, E. (eds) Dietary Phenylalanine and Brain Function. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9821-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9821-3_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9823-7

  • Online ISBN: 978-1-4615-9821-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics