Advertisement

Neurotoxins

Chapter

Abstract

Various animals employ toxic substances in order to capture their prey or to deter their enemies (Zlotkin, 1973). They can be subdivided into (a) venomous animals — which possess the proper instrumentation for stinging-piercing and the time- and site-directed introduction of their mixtures of toxic substances (defined as venoms) into the circulation or tissues of their prey or opponent; (b) poisonous animals which are devoid of the apparatus for stinging and employ toxic substances for defensive purposes (Blum, 1981).

Keywords

Disulphide Bridge Giant Axon Scorpion Venom Crude Venom Scorpion Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Alema, S. and Miledi, R. (1977) Isolation and characterization of presynaptically acting neuroToxins from the venom of Bungarus snakes. Eur. J. Biochem. 80, 1Google Scholar
  2. Abe, T., Kawai, N. and Niwa, A. (1983) Effects of spider toxin on the glutaminergic synapse of lobster muscle. J. Physiol 339, 243 Google Scholar
  3. Abe, T., Limbrick, A.R. and Miledi, R. (1976) Acute muscle denervation induced by a-bungarotoxin. Proc. R. Soc. LondL B. Biol. Sci. 194, 545Google Scholar
  4. Abelson, P.H. (1983) Biotechnology: an overview. Science 219, 611Google Scholar
  5. Abia, A., Lobaton, C.D., Moreno, A. and Garcia-Sancho, Y. (1986) Leiurus quinquestriatus venom inhibits different kinds of Ca-dependent K+ channels. Biochim. Biophys. Acta 856, 403Google Scholar
  6. Albuquerque, E.X. and Daly, J.W. (1976) Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In: Cuatrecasas, P. (ed.) Receptors and recognition, pp. 299–336. Chapman & Hall, LondonGoogle Scholar
  7. Albuquerque, E.X. and Daly, J. (1977) Steroidal alkaloid toxin and ion transport in electrogenic membranes. In: Cuatrecasas, P. (ed.) The specificity and action of animal, bacterial and plant toxin, pp. 279–338. Chapman & Hall, LondonGoogle Scholar
  8. Aliens, E.J. (1979) Receptors from fiction to fact. Trends Pharm. Sci., inaugural issue, 11Google Scholar
  9. Baba, A. and Cooper, J.R. (1980) The action of black widow spider venom on cholinergic mechanisms in synaptosomes. J. Neurochem. 34, 1369Google Scholar
  10. Babin, D.R., Watt, D.D., Goos, S.M. and Mlejnek, R.V. (1974) Amino acid sequences of neurotoxin protein variants from the venom of Centruroides sculpturatus Ewing. Arch. Biochem. Biophys. 164, 694Google Scholar
  11. Babin, D.R., Watt, D.D., Goos, S.M. and Mlejnek, R.V. (1975) Amino acid sequences of neurotoxin I from Centruroides sculpturatus Ewing. Arch. Biochem. Biophys. 166, 125Google Scholar
  12. Baguis, R., Chanteau, S., Chungue, E., Hartel, J.M., Yasumoto, T. and Inone, A. (1980) Origins of ciguatera fish poisoning: a new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. Toxicon 18, 199Google Scholar
  13. Barchi, R.L. (1983) Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J. Neurochem. 40, 1377Google Scholar
  14. Barhanin, J., Hugues, M., Schweitz, H., Vincent, J-P. and Lazdunski, M. (1981) Structure-function relationships of sea anemone toxin Ü from Anemonia sulcata. J. Biol. Chem. 256, 5764Google Scholar
  15. Beard, R.L. (1963) Insect Toxins and venoms. Ann. Rev. Ent. 8, 1 Beard, R.L. (1978) Venoms of Braconidae. In: Bettini, S. (ed.) Arthropod venoms,pp. 773–800. Springer, Berlin and New YorkGoogle Scholar
  16. Bearg, W.J. (1959) The black widow and five other venomous spiders in the United States. Agr. Exp. Stn. Arkansas Univ. Bull. 608Google Scholar
  17. Bearg, W.J. (1961) Scorpions biology and effect of the venom. Univ. Kansas Agric. Exp. Stn. Bull. 649Google Scholar
  18. Beneski, D.A. and Catterall, W.A. (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. Natl Acad. Sci. USA 77, 639Google Scholar
  19. Benzer, T.I. and Raftery, M.A. (1973) Solubilization and partial characterization of the tetrodotoxin binding component from nerve axons. Biochem. Biophys. Res. Commun. 51, 939Google Scholar
  20. Beress, L. (1982) Biologically active compounds from coelenterates. Pure and Appl. Chem. 54, 1981Google Scholar
  21. Beress, L., Wunderer, G. and Wachter, E. (1977) Amino acid seqence of toxin ÜI from Anemonia sulcata. Hoppe-Seyler’s Z. Physiol Chem. 358, 985Google Scholar
  22. Bergman, C., Dubois, J.M., Rojas, E. and Rathmayer, W. (1976) Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim. Biophys. Acta 455, 173Google Scholar
  23. Bernheimer, A.W. and Avigad, L.S. (1981) New cybolysins in the sea anemones from the West Coast of the United States. Toxicon 19, 529Google Scholar
  24. Bernheimer, A.W. and Avigad, L.S. (1982) Toxins of the sea anemone Epiactis prolifera. Arch. Biochem. Biophys. 217, 174Google Scholar
  25. Berwald-Netter, Y., Martin-Moutot, N., Kaoulakoff, A. and Couraud, F. (1981), Na+-channel associated scorpion toxin receptor sites as probes for neuronal evolution in vivo and in vitro. Proc. Natl Acad. Sci. USA 78, 1245Google Scholar
  26. Bettini, S. and Maroli, M. (1978) Venoms of Theridüdae, genus Latrodectus. A. Systematics, distribution and biology of species: chemistry, pharmacology and mode of action of venom. In: Bettini, S. (ed.) Arthropod venoms, pp. 149–85. Springer, Berlin and New YorkGoogle Scholar
  27. Bidard, J.N., Vijverberg, H.N.P., Frelin, Ch., Chungue, E., Legrand, A.M., Bagnis, R. and Lazdunski, M. (1984) Ciguatoxin is a novel type of Na+ channel toxin. J. Biol. Chem. 259, 8353Google Scholar
  28. Blanquet, R. (1968) Properties and composition of the nematocyst toxin of the sea anemone, Aiptasia pallida. Comp. Biochem. Physiol. 25, 893Google Scholar
  29. Blum, M.S. (1981) Chemical defenses of arthropods. Academic Press, New York and LondonGoogle Scholar
  30. Blumenthal, K.M. (1980) Structure and action of heteronemertine polypeptide Toxins: inactivation of Cerebratulus lacteus toxin B-IV concomitant with tryptophan alkylation. Arch. Biochem. Biophys. 203, 822Google Scholar
  31. Blumenthal, K.M. (1982) Structure and action of heteronemertine polypeptide Toxins. Membrane penetration by Cerebratulus lacteus toxin A-ÜI. Biochemistry 21, 4229Google Scholar
  32. Blumenthal, K.M. (1986) Renaturation of neurotoxin B-IV from the heteronemertine Cerebratulus lacteus. Toxicon 24, 63Google Scholar
  33. Blumenthal, K.M. and Kem, W.R. (1976) Structure and action of heteronemertine polypeptide Toxins. Primary structure of Cerebratulus lacteus toxin B-IV. J. Biol. Chem. 251, 6025Google Scholar
  34. Blumenthal, K.M. and Kem, W.R. (1977) Structure and action of heteronemertine polypeptide Toxins. Disulfide bonds of Cerebratulus lacteus toxin B-IV. J. Biol. Chem. 252, 3328Google Scholar
  35. Blumenthal, K.M. and Kem, W.R. (1980a) Structure and action of heteronemertine polypeptide Toxins: inactivation of Cerebratulus lacteus toxin B-IV by tyrosine nitration. Arch. Biochem. Biophys. 203, 816Google Scholar
  36. Blumenthal, K.M. and Kem, W.R. (1980b) Structure-function relationships in Cerebratulus toxin B-IV. In: Eaker, D. and Wandstrom, T. (eds) Natural Toxins, pp. 487–92. Pergamon Press, Oxford and New YorkGoogle Scholar
  37. Blumenthal, K.M., Keim, P.S., Heinrikson, R.L. and Kem, W.R. (1981) Structure and action of heteronemertine polypeptide toxins. Amino acid sequence of Cerebratulus lacteus toxin B-Ü and revised structure of toxin B-IV. J. Biol Chem. 256, 9063Google Scholar
  38. Brazil, O.V., Neder, A.C. and Corrado, A.P. (1973) Effects and mechanism of action of Tityus serrulatus venom on skeletal muscle. Pharmacol Res. Commun. 5, 137Google Scholar
  39. Breer, H. (1981) Properties of putative nicotinic and muscarinic cholinergic receptors in the central nervous system of Locusta migratoria. Neurochem. Int. 13, 43Google Scholar
  40. Breer, H. (1983a) Venoms and toxins in neurochemical research of insects. In: Hucho, F. and Ovchinnikov, Y.A. (eds) Toxins as tools in neurochemistry, pp. 115–25. De Gruyter, Berlin and New YorkGoogle Scholar
  41. Breer, H. and Jeserich, G. (1980) A microscale flotation technique for the isolation of synaptosomes from the nervous tissue of Locusta migratoria. Insect Biochem. 10, 457Google Scholar
  42. Breer, H., Kleene, R. and Hinz, G. (1985) Molecular forms and subunit structure of the acetylcholine acceptor in the central nervous system of insects. J. Neurosci. 5, 3386Google Scholar
  43. Brownell, P.H. (1984) Prey detection by the sand scorpion. Sci. Amer. 251, 94Google Scholar
  44. Bucherl, W. (1971) Classification biology and venom extraction of scorpions. In: Bucherl, W. and Buckley, E. (eds) Venomous animals and their venoms, Vol 3, Venomous invertebrates, pp. 317–46. Academic Press, New YorkGoogle Scholar
  45. Cahalan, M.D. (1975) Modification of sodium channel gating of frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J. Physiol (Lond.) 244, 511Google Scholar
  46. Carbone, E., Wanke, E., Prestipino, G., Possani, L.D. and Maelicke, A. (1982) Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature (Lond.) 296, 90Google Scholar
  47. Catterall, W.A. (1975a) Activation of the action potential sodium ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J. Biol Chem. 250, 4053Google Scholar
  48. Catterall, W.A. (1975b) Cooperative activation of the action potential Na+ iono-phore by neuroToxins. Proc. Natl Acad. Sci. USA 72, 1782Google Scholar
  49. Catterall, W.A. (1977a) Membrane potential dependent binding of scorpion toxin to the action potential sodium ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalysed iodination. J. Biol Chem. 252, 8660Google Scholar
  50. Catterall, W.A. (1977b) Activation of the action potential Na+ ionophore by neuroToxins. An allosteric model. J. Biol Chem. 252, 8669Google Scholar
  51. Catterall, W.A. (1979) Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation with voltage-dependent activation. J. Gen. Physiol 74, 375Google Scholar
  52. Catterall, W.A. (1980) NeuroToxins that act on voltage-sensitive sodium channels in excitable membranes. Am. Rev. Pharmacol Toxicol 20, 15Google Scholar
  53. Catterall, W.A. (1981) Localization of sodium channels in cultured neural cells. J. Neurosci. 1, 111Google Scholar
  54. Catterall, W.A. (1984) The molecular basis of neuronal excitability. Science 223, 653Google Scholar
  55. Catterall, W.A. (1985) The electroplax sodium channel revealed. Trends Neurosci. 8, 39Google Scholar
  56. Catterall, W.A. (1986) Voltage-dependent gating of sodium channels: correlating structure and function. Trends Neurosci. 9, 1Google Scholar
  57. Catterall, W.A. and Beress, L. (1978) Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential Na+ ionophore. J. Biol. Chem. 253, 7393Google Scholar
  58. Catterall, W.A. and Morrow, C.S (1978) Binding of saxitoxin to electrically excit-able neuroblastoma cells. Proc. Natl Acad. Sci. USA 75, 218Google Scholar
  59. Changeux, J.P., Kasai, M. and Lee, C.Y. (1970) Use of snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl Acad Sci, USA 67, 1241Google Scholar
  60. Chibber, B.A., Martin, B.M., Walkinshaw, M.D., Saenger, W. and Maelicke, A. (1983) The sites of neurotoxicity in a-cobratoxin. In: Hucho, F. and Ovchinnikov, Y.A. (eds) Toxins as tools in neurochemistry, pp. 141–50. De Gruyter, Berlin and New YorkGoogle Scholar
  61. Clark, A.W., Mauro, A., Longenecker, H. and Hurlbut, W.P. (1970) Effects of black widow spider venom on the frog neuromuscular junction. Nature (Lond.) 225, 703Google Scholar
  62. Clark, R.B., Donaldson, P.L., Gration, K.A.F., Lambert, J.J., Piek, T., Spanjer, W. and Usherwood, P.N.R. (1980) Post-synaptic block at neuromuscular function on locust muscle by d-philanthotoxin. J. Physiol. (Lond.) 310, 8 PGoogle Scholar
  63. Clark, R.B., Donaldson, P.L., Gration, K.A.F., Lambert, J.J., Piek, T., Ramsey, R., Spanjer, W. and Usherwood, P.N.R. (1982) Block of locust muscle glutamate receptor by d-philanthotoxin occurs after receptor activations. Brain Res.241, 105Google Scholar
  64. Couraud, F. and Jover, E. (1984) Mechanism of action of scorpion Toxins. In: Tu, A.T. (ed.) Handbook of natural Toxins, vol. 2, pp. 659–78. Marcel Dekker, New York and BasleGoogle Scholar
  65. Couraud, F., Jover, E., Dubois, J.M. and Rochat, H. (1982) Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20, 9Google Scholar
  66. Couraud, F., Rochat, H. and Lissitzky, S. (1978) Binding of scorpion and sea anemone neuroToxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells. Biochem. Biophys. Res. Commun. 83, 1525Google Scholar
  67. Crosland, R.D., Hsiao, T.H. and McClure, W.O. (1984) Purification and characterization of a-leptinotarsin-h, an activator of presynaptic calcium channels. Biochemistry 23, 734Google Scholar
  68. Cruz, L.J., Gray, W.R., Olivera, B.M., Zeikus, R.D., Kerr, L., Yoshikami, D. and Moczydlowski, E. (1985) Conus geographicus Toxins that discriminate between neuronal and muscle sodium channels. J. Biol. Chem. 260, 9280Google Scholar
  69. Cull-Candy, S.G., Neal, H. and Usherwood, P.N.R. (1973) Action of black widow spider venom on an aminergic synapse. Nature (Lond.) 241, 353Google Scholar
  70. Curtis, D.R. and Johnston, G.A.R. (1974) Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97Google Scholar
  71. D’Ajello, V., Magni, F. and Bettini, S. (1971) The effect of the venom of the black widow spider Latrodectus mactans tredecimguttatus on the giant neurones of Periplaneta americana. Toxicon 9, 103Google Scholar
  72. Darbon, H., Jover, E., Couraud, F. and Rochat, H. (1983) Photoaffinity labeling of a- and ß-scorpion toxin receptors associated with rat brain sodium channel. Biochem. Biophys. Res. Commun. 115, 415Google Scholar
  73. Darbon, H., Zlotkin, E., Kopeyan, C, Van Rietschoten, J. and Rochat, H. (1982) Covalent structure of the insect toxin of the North African scorpion Androctonus australis hector. Int. J. Peptide Protein Res. 20, 320Google Scholar
  74. Deitmer, J.W. (1973) Die Wirkung des Giftes der Schlupfwespe Habrobracon hebetor (Say) auf die Neuromuskuläre Übertragung am Sartoriusmuskel des Frosches. Diplomarbeit, Universität BonnGoogle Scholar
  75. Drenth, D. (1974a) Stability of Microbracon hebetor (Say) venom preparation. Toxicon 12, 541Google Scholar
  76. Drenth, D. (1974b) Susceptibility of different species of insects to an extract of the venom gland of the wasp Microbracon hebetor (Say). Toxicon 12, 189Google Scholar
  77. Dudai, Y. (1978) Properties of an a-bungarotoxin binding to cholinergic nicotinic receptor from Drosophila melanogaster. Biochim. Biophys. Acta 539, 505Google Scholar
  78. Dunbar, S.J. and Piek, T. (1983) The action of iontophoretically applied L-glutamate on an insect visceral muscle. Arch. Ins. Biochem. Physiol. 1, 93Google Scholar
  79. Eaker, D. and Wandstrom, T. (eds) (1980) Natural Toxins. Pergamon Press, Oxford and New YorkGoogle Scholar
  80. Farmer, P.S. (1980) Bridging the gap between bioactive peptides and nonpeptides: some perspectives in design. In: Ariens, E.J. (ed.) Drug design, Vol. 10, pp. 119–43. Academic Press, New York and LondonGoogle Scholar
  81. Finkelstein, A., Rubin, L.L. and Tzeng, M.C. (1976) Black widow spider venom: effect of the purified toxin on lipid bilayer membranes, Science 193, 1009Google Scholar
  82. Fosset, M., Schmid-Antomarchi, H., Hugues, M., Romey, G. and Lazdunski, M. (1984) The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide that specifically blocks Ca2+ dependent K+ channels. Proc. Natl Acad. Sci. USA 81, 7228Google Scholar
  83. Fritz, L.C., Tzeng, M.C. and Mauro, A. (1980) Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions. Nature (Lond.) 283, 486Google Scholar
  84. Frontali, N., Ceccarelli, B., Gorio, A., Mauro, A., Siekevitz, P., Tzeng, M.C. and Hurlbut, W.P. (1976) Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J. Cell Biol. 68, 462Google Scholar
  85. Frontali, N. and Grasso, A. (1964) Separation of three toxicologically different protein components from the venom of the spider Latrodectus tredecimguttatus. Arch. Biochem. Biophys. 106, 213Google Scholar
  86. Gerschenfeld, H.M. (1973) Chemical transmission in invertebrate central nervous system and neuromuscular junctions. Physiol. Rev. 53, 1Google Scholar
  87. Gitschier, J., Strichartz, G.R. and Hall, L.M. (1980) Saxitoxin binding to sodium channels in head extracts from wild-type and tetrodotoxin sensitive strains of Drosophila melanogaster. Biochim. Biophys. Acta 595, 291Google Scholar
  88. Glatz, L. (1969) Correlations entre la capture de la proie et les structures des pieces buccales chez les Uloboridae. Bull. Mus. Nat. Hist. Natur. 41, 65Google Scholar
  89. Gordon, D., Jover, E., Couraud, F. and Zlotkin, E. (1984) The binding of the insect selective neurotoxin (AalT) from scorpion venom to locust synaptosomal membranes. Biochim. Biophys. Acta 778, 349Google Scholar
  90. Gordon, D., Zlotkin, E. and Catterall, W.A. (1985) The binding of an insect selective neurotoxin and saxitoxin to insect neuronal membranes. Biochim. Biophys. Acta 821, 130Google Scholar
  91. Gordon, D., Zlotkin, E. and Kanner, B. (1982) Functional membrane vesicles from the nervous system of insects. I. Sodium and chloride dependent cx-aminobutyric acid transport. Biochim. Biophys. Acta 688, 229Google Scholar
  92. Goyffon, M. and Kovoor, J. (1978) Chactoid venoms. In: Bettini, S. (ed.) Arthropod venoms, pp. 395–418. Springer, Berlin and New YorkGoogle Scholar
  93. Grasso, A. (1976) Preparation and properties of a neurotoxin from the venom of black widow spider (Latrodectus mactans tridecimguttatus). Biochim. Biophys. Acta 439, 406Google Scholar
  94. Grasso, A. and Paggi, P. (1967) Effect of Latrodectus mactans tredecimguttatus venom on the crayfish stretch receptor neurone. Toxicon 5, 1Google Scholar
  95. Grasso, A. and Senni, M.I. (1979) A toxin purified from the venom of black widow spider affects uptake and release of radioactive y-aminobutyrate and N-epinephrine from rat brain synaptosomes. Eur. J. Biochem. 102, 337Google Scholar
  96. Gray, W.R., Lugue, A. and Olivera, B.M. (1981) Peptide Toxins from Conus geographicus venom. J. Biol. Chem. 256, 4734Google Scholar
  97. Gregoire, J. and Rochat, H. (1983) Covalent structure of toxin I and Ü from the scorpion Buthus occitanus tunetanus. Toxins 21, 153Google Scholar
  98. Griffiths, D.J.G. and Smyth, T., Jr (1973) Action of black widow spider venom of insect neuromuscular junctions. Toxicon 11, 369Google Scholar
  99. Grishin, E.V., Volkova, T.M. and Soldatova, L.N. (1982) A study of the toxic component of the venom of the Caucasian subspecies of the scorpion Buthus epeus. Biorg. Khim (USSR) 8, 155Google Scholar
  100. Gruener, R. (1973) Excitability blockage of the squid giant axon by the venom of Latrodectus mactans (black widow spider). Toxicon 11, 155Google Scholar
  101. Habermann, E. (1971) Chemistry, pharmacology and toxicology of bee, wasp and hornet venom. In: Bucherl, W. and Buckley, E. (eds) Venomous invertebrates, pp. 61–89. Academic Press, New YorkGoogle Scholar
  102. Harris, R., Cattell, K.J. and Donnellan, J.F. (1980) Characterization of a-bungaro- toxin binding to homogenates of housefly brain. In: Insect neurobiology and pesticide action (Neurotox 79), pp. 209–12. Society of Chemical Industry, LondonGoogle Scholar
  103. Harrow, I.D., Hue, B., Gepner, J.I., Hall, L.M. and Sattelle, D.B. (1980) An abungarotoxin sensitive acetylcholine receptor in the central nervous system of the cockroach (Periplaneta americana L.). In: Insect neurobiology and pesticide action (Neurotox 79), pp. 137–44. Society of Chemical Industry, LondonGoogle Scholar
  104. Hartshorne, R.P. and Catterall, W.A. (1984) The sodium channel from rat brain: purification and subunit composition. J. Biol. Chem. 259, 1667Google Scholar
  105. Hartshorne, R.P., Messner, D.J., Coppersmith, J.C. and Catterall, W.A. (1982) The saxitoxin receptor of the sodium channel from rat brain. Evidence for two non- identical subunits. J. Biol. Chem. 257, 13888Google Scholar
  106. Henderson, R. and Wang, J.H. (1972) Solubilization of a specific tetrodotoxin binding component from garfish olfactory nerve membranes. Biochemistry 11, 4565Google Scholar
  107. Herzog, W.H., Feibel, R.M. and Bryant, S.H. (1974) Effect of aconitine on the giant axon of the squid. J. Gen. Physiol. 47, 119Google Scholar
  108. Hessinger, D.A. and Lenhoff, H.M. (1973) Assay and properties of hemolysis activity of pure venom from the nematocysts of the acontia of the sea anemone Aiptasia pallida. Arch. Biochem. 159, 629Google Scholar
  109. Hille, B. (1968) Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51, 199Google Scholar
  110. Hille, B. (1971) The permeability of the sodium channel to organic cations in myelinated nerve. J. Gen. Physiol 58, 599Google Scholar
  111. Hille, B. (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys. J. 75, 615Google Scholar
  112. Howard, B.D. and Gundersen, C.B. (1980) Effects and mechanisms of polypeptide neuroToxins that act presynaptically. Ann. Rev. Pharmacol. Toxicol. 20, 307Google Scholar
  113. Hu, S.L. and Kao, G.Y. (1986) The pH dependence of the tetrodotoxin-blockade of the sodium channel and implications for toxin binding. Toxicon 24, 25Google Scholar
  114. Hucho, F. and Ovchinnikov, Y.A. (eds) (1983) Toxins as tools in neurochemistry. De Gruyter, Berlin and New YorkGoogle Scholar
  115. Hugues, M., Romey, G., Duval, D., Vincent, J.P. and Lazdunski, M. (1982a) Apamin as a selective blocker of the calcium dependent potassium channel in neuroblastoma cells; voltage clamp and biochemical characterization of the toxin receptor. Proc. Natl Acad. ScL USA 79, 1308Google Scholar
  116. Hugues, M., Schmid, H. and Lazdunski, M. (1982b) Identification of a protein component of the Ca2+ dependent K+ channel by affinity labelling with apamin. Biochem. Biophys. Res. Commun. 107, 1577Google Scholar
  117. Jackson, F.R., Wilson, S.D., Strichartz, G.R. and Hall, L.M. (1984) Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster. Nature (Lond.) 308, 189Google Scholar
  118. Jacques, Y., Fosset, M. and Lazdunski, M. (1978) Molecular properties of the action potential Na+ ionophore in neuroblastoma cells. J. Biol. Chem. 253, 7383Google Scholar
  119. Jaimovich, E., Ildefonse, M., Barhanin, J., Rougier, O. and Lazdunski, M. (1982) Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle voltage-clamp analysis and biochemical characterization of the receptor. Proc. Natl Acad. Sci. USA 79, 3896Google Scholar
  120. Jover, E., Couraud, F. and Rochat, H. (1980) Two types of scorpion neuroToxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Commun. 95, 1607Google Scholar
  121. Kagan, B.L., Pollard, H.B. and Hanna, R.B. (1982) Induction of ion-permeable channels by the venom of the fanged bloodworm Glycera dibranchiata. Toxicon 20, 887Google Scholar
  122. Katz, N.L. and Edwards, C.H. (1972) The effect of scorpion venom on the neuro-muscular junction of the frog. Toxicon 10, 133Google Scholar
  123. Kawai, N., Mauro, A. and Grundfest, H. (1972) Effect of black widow spider venom on the lobster neuromuscular junctions. J. Gen. Physiol. 60, 650Google Scholar
  124. Kawai, N., Niwa, A. and Abe, T. (1982a) Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res. 247, 169Google Scholar
  125. Kawai, N., Niwa, A. and Abe, T. (1982b) Effect of a spider toxin on glutaminergic synapses in the mammalian brain. Biomed. Res. 3, 353Google Scholar
  126. Kawai, N., Niwa, A. and Abe, T. (1983a) Specific antagonism of the glutamate receptor by an extract from the venom of the spider Araneus ventricosus. Toxicon 21, 438Google Scholar
  127. Kawai, N., Niwa, A. and Abe, T. (1983b) Block of glutamate receptors by a spider toxin. In: Mandel, P. and De Fendis, F.V. (eds) CNS receptors —from molecular pharmacology to behavior, pp. 221–7. Raven Press, New YorkGoogle Scholar
  128. Kem, W.R. (1973) Biochemistry of nemertine Toxins. In: Martin, D.F. and Padilla, G.M. (eds) Marine pharmacognosy, pp. 38–84. Academic Press, New YorkGoogle Scholar
  129. Kem, W.R. (1976) Purification and characterization of a new family of polypeptide neurotoxins from the heteronemertine Cerebratulus lacteus (Leidy). J. Biol. Chem. 251, 4189Google Scholar
  130. Kem, W.R. and Blumenthal, K.M. (1978b) Polypeptide cytolysins and neuroToxins isolated from the mucus secretions of the heteronerpertine Cerebratulus lacteus (Leidy). In: Rosenberg, P. (ed.) Toxins — animal, plant and microbial, pp. 509- 16. Pergamon Press, Oxford and New YorkGoogle Scholar
  131. Kem, W.R., Scott, K.N. and Duncan, J.H. (1976) Hoplonemertine worms — a new source of pyridine neurotoxins. Experientia 32, 684Google Scholar
  132. Kerr, L. and Yoshikami, D. (1984) A venom peptide with a novel presynaptic blocking action. Nature (Lond.) 308, 282Google Scholar
  133. Kobayashi, J., Nakamura, H., Hirata, Y. and Ohizumi, Y. (1983) Tessulatoxin, the vasoactive protein from the venom of the marine snail Conus tessulatus. Comp. Biochem. Physiol 74B, 381Google Scholar
  134. Kopeyan, C., Martinez, G., Lissitzky, S., Miranda, F. and Rochat, H. (1974) Disulfide bonds of toxin Ü of the scorpion Androctonus australis Hector. Eur. J. Biochem. 47, 483Google Scholar
  135. Koppenhofer, E. and Schmidt, R. (1968) Die Wirkung von Skorpiongift auf die Ionenstrome des Ranvier’schen Schnurrings. I. Die Permeabilitaten von PNa+ und PK+- Pflugers Arch. 303, 133Google Scholar
  136. Krnjevic, K. (1974) Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54, 418Google Scholar
  137. Lafranconi, W.M., Ferlan, L, Russell, F.E. and Huxtalele, R.J. (1984) The action of equinatoxin, a peptide from the venom of the sea anemone, Actinia equina, on the isolated lung. Toxicon 22, 347Google Scholar
  138. Lazarovici, P., Menashe, M. and Zlotkin, E. (1984) Toxicity to Crustacea due to polypeptide-phospholipase interaction in the venom of a chactoid scorpion. Arch. Biochem. Biophys. 229, 270Google Scholar
  139. Lazarovici, P. and Zlotkin, E. (1982) A mammal toxin derived from the venom of a chactoid scorpion. Comp. Biochem. Physiol. 71C, 111Google Scholar
  140. Lazarovici, P., Yanai, P., Pelhate, M. and Zlotkin, E. (1982) Insect toxic components from the venom of a chactoid scorpion Scorpio maurus palmatus (Scorp- ionidae). J. Biol. Chem. 257, 8397Google Scholar
  141. Lee, C.Y. (1972) Chemistry and pharmacology of polypeptide Toxins in snake venoms. Ann. Rev. Pharmacol. 12, 265Google Scholar
  142. Lee, C.Y. (1979a) Recent advances in chemistry and pharamacology of snake Toxins. In: Ceccarelli, B. and Clementi, F. (eds) Advances in cytopharmacology, Vol. 3, pp. 1–16. Raven Press, New YorkGoogle Scholar
  143. Lee, C.Y. (1979b) Snake venoms. Springer, Berlin and New York Lees, G., Beadle, D. J. and Botham, R.P. (1983) Cholinergic receptors on cultured neurones from the central nervous system of embryonic cockroaches. Brain Res. 288, 49Google Scholar
  144. Lester, D., Lazarovici, P., Pelhate, M. and Zlotkin, E. (1982) Two insect Toxins from the venom of the scorpion Buthotus judaicus. Purification, characterization and action. Biochim. Biophys. Acta 701, 370Google Scholar
  145. Lieberman, D.L. and Blumenthal, K.M. (1986) Structure and action of heterone- mertine polypeptide Toxins. Specific cross-linking of Cerebratulus lacteus toxin B-IV to lobster axon membrane vesicles. Biochim. Biophys. Acta 855, 41Google Scholar
  146. Longenecker, H.E. Jr, Hurlbut, W.P„ Mauro, A. and Clark, A.W. (1970) Effects of black widow spider venom on the frog neuromuscular junction. Effects on end plate potential, miniature end plate potential and nerve terminal spike. Nature (Lond.) 225, 701Google Scholar
  147. Low, P.A., Wu, C.H. and Narahashi, T. (1979) Effect of anthopleurin A on crayfish giant axon. J. Pharmacol. Exp. Ther. 210, AllGoogle Scholar
  148. Manaranche, R., Thieffry, M. and Israel, M. (1980) Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter. J. Cell. Biol. 85, 446Google Scholar
  149. Mansour, N.A., Pessah, I.N. and Eldefrawi, A.T. (1980) Binding of [125I] a-bungarotoxin and reversible cholinergic ligands to proteins in house fly brains. In: Insect neurobiology and pesticide action (Neurotox 79), pp. 201–8. Society of Chemical Industry, LondonGoogle Scholar
  150. Marias, G. and Bon, C. (1982) Relationship between the pharmacological action of crotoxin and its phospholipase activity. Eur. J. Biochem. 125, 157Google Scholar
  151. Maroli, M., Bettini, S. and Parrfili, B. (1973) Toxicity of Latrodectus mactans tredecimguttatus venom on frog and birds. Toxicon 11, 203Google Scholar
  152. May, T.E. and Piek, T. (1979) Neuromuscular block in locust skeletal muscle caused by a venom preparation made from the digger wasp Philanthus triangulum F. from Egypt. J. Insect. Physiol. 25, 685Google Scholar
  153. McClure, W.O., Abbott, B.C., Baxter, D.E., Hsiao, T.H., Satin, L.S., Siger, A. and Yosino, J.E. (1980) Leptinotarsin: a presynaptic neurotoxin that stimulates release of acetylcholine. Proc. Natl Acad. Sci. USA 77, 1219Google Scholar
  154. Mcintosh, M., Cruz, L.J., Hunkapiller, M.W., Gray, W.R. and Olivera, B.M. (1982) Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch. Biochem. Biophys. 218, 329Google Scholar
  155. Mcintosh, M.E. and Watt, D.D. (1972) Purification of Toxins from the North American scorpion Centruroides sculpturatus. In: de Vries, A. and Kochva, E. (eds) Toxins of animal and plant origin, Vol. 2, pp. 529–44. Gordon & Breach, LondonGoogle Scholar
  156. Mebs, D., Liebrich, M., Reul, A. and Samejima, Y. (1983) Hemolysins and protein-ase inhibitors from sea anemones of the Gulf of Aqaba. Toxicon 21, 257Google Scholar
  157. Mebs, D., Narita, K., Iwanaga, S., Samejima, Y. and Lee, C.Y. (1972) Purification, properties and amino acid sequence of a-bungarotoxin from the venom of Bungarus multicinctus. Hoppe-Seyler’s Z. Physiol. Chem. 353, 243Google Scholar
  158. Meldolesi, J. (1982) Studies on a-latrotoxin receptors in rat brain synaptosomes. Correlation between toxin binding and stimulation of transmitter release. J. Neurochem. 38, 1559Google Scholar
  159. Meldolesi, J., Madeddu, L., Gatti, G. and Watanabe, O. (1983) Studies on a-latrotoxin of black widow spider venom and its receptor in presynaptic membranes. Period. Biol. 85, 107Google Scholar
  160. Michaelis, E.K., Galton, N. and Early, S. (1984) Spider venoms inhibit L-glutamate binding to brain synaptic membrane receptors. Proc. Natl Acad Sci. USA 81, 5571Google Scholar
  161. Miller, J.A., Agnew, W.S. and Levinson, S.R. (1983) Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry 22, 462Google Scholar
  162. Miller, Ch., Moczydlowski, E., Latorre, R. and Phillips, M. (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature (Lond.) 313, 316Google Scholar
  163. Miranda, F., Kopeyan, C., Rochat, C., Rochat, H. and Lissitsky, S. (1970) Purification of animal neuroToxins. Isolation and characterization of eleven neuroToxins from the venom of the scorpions Androctonus australis Hector, Buthus occitanus tunetatus and Leiurus quinquestriatus. Eur. J. Biochem. 16, 514Google Scholar
  164. Miyamoto, T., Ohizumi, O., Washio, H. and Yasumoto, T. (1984) Potent excitatory effect of maitotoxin on Ca channels in the insect skeletal muscle. Pflügers Arch. 400, 439Google Scholar
  165. Morel, N., Theiffry, M. and Manaranche, R. (1983) Binding of a Glycera convoluta neurotoxin to cholinergic nerve terminal plasma membranes. J. Cell. Biol. 97, 1737Google Scholar
  166. Nagai, T., Obara, S. and Kawai, N. (1984) Differential blocking effects of a spider toxin on synaptic and glutamate responses in the afferent synapse of the acoustico lateralis receptor of Plotosus. Brain Res. 300, 183Google Scholar
  167. Nakamura, Y., Nakajima, S. and Grundfest, H. (1965) The action of tetrodotoxin on electrogenic components of squid giant axons. J. Gen. Physiol. 48, 985Google Scholar
  168. Narahashi, T. (1974) Chemicals as tools in the study of excitable membranes. Physiol Rev. 54, 813Google Scholar
  169. Narahashi, T., Anderson, N.C. and Moore, J.W. (1966) Tetrodotoxin does not block excitation from inside the nerve membrane. Science 153, 765Google Scholar
  170. Narahashi, T., Haas, H.G. and Terrien, E.F. (1967) Saxitoxin and tetrodotoxin: comparison of nerve blocking mechanism. Science 157, 1441Google Scholar
  171. Narahashi, T., Moore, J.W. and Scott, W.R. (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axon. J. Gen. Physiol. 47, 965Google Scholar
  172. Narahashi, T., Shapiro, B.I., Deguchi, T., Scuka, M. and Wang, C.M. (1972) Effects of scorpion venom on squid axon membranes. Am. J. Physiol. 222, 850Google Scholar
  173. Oblas, B., Boyd, N.D. and Singer, R.H. (1983) Analysis of receptor-ligand interactions using nitrocellulose gel transfer: application to Torpedo acetylcholine receptor and alphabungarotoxin. Anal. Biochem. 130, 1Google Scholar
  174. Ohizumi, Y., Kajiwara, A. and Yasumoto, T. (1983) Excitatory effect of the most potent marine toxin, maitotoxin, on the guinea-pig vas deferens. J. Pharmacol Exp. Ther. 227, 199Google Scholar
  175. Ohizumi, Y. and Yasumoto, T. (1983) Contractile response of the rabbit aorta to maitotoxin, the most potent marine toxin. J. Physiol 337, 111Google Scholar
  176. Ohta, M., Narahashi, T. and Keeler, R.F. (1973) Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J. Pharmacol Exp. Ther. 184, 143Google Scholar
  177. Ornberg, R.L., Smyth, T. and Benton, A.W. (1976) Isolation of neurotoxin with a presynaptic action from the venom of the black widow spider (Latrodectus mactans, Fabr.). Toxicon 14, 329Google Scholar
  178. Ovchinnikov, Yu. A. and Grishin, E.V. (1982) Scorpion neuroToxins as tools for studying fast sodium channels. Trends Biochem. Sci. 7, 26Google Scholar
  179. Paggi, P. and Toschi, G. (1977) Effects of denervation and lack of calcium on the action of Latrodectus venom on rat sympathetic ganglion. Life Sci. 11, 413Google Scholar
  180. Pansa, M.C., Migliori Natalizi, G. and Bettini, S. (1973) Effect of scorpion venom and its fractions on the crayfish stretch receptor organ. Toxicon 11, 283Google Scholar
  181. Parnas, I., Avgar, D. and Shulov, A. (1970) Physiological effects of venom of Leiurus quinquestriatus on neuromuscular systems of locust and crab. Toxicon 8, 67Google Scholar
  182. Parnas, I. and Russell, F.E. (1967) Effects of venom on nerve muscle and neuro-muscular junction. In: Russell, F.E. and Saunders, P.R. (eds) Animal Toxins, pp. 401–27. Pergamon Press, Oxford and New YorkGoogle Scholar
  183. Pauron, D., Barhanin, J. and Lazdunski, M. (1985) The voltage-dependent Na+ channel of insect nervous system identified by receptor sites for tetrodotoxin and scorpion and sea anemone Toxins. Biochem. Biophys. Res. Commun. 131, 1226Google Scholar
  184. Pelhate, M. and Sattelle, D.B. (1982) Pharmacological properties of insect axons: a review. J. Insect Physiol 28, 889Google Scholar
  185. Pelhate, M. and Zlotkin, E. (1981) Voltage dependent slowing of the turn off of Na+ current in the cockroach giant axon induced by the scorpion venom ‘insect toxin’. J. Physiol (Lond.) 319, 30Google Scholar
  186. Pelhate, M. and Zlotkin, E. (1982) Actions of insect toxin and other Toxins derived from the venom of the scorpion Androctonus australis in isolated giant axons of the cockroach (Periplaneta americana). J. Exp. Biol. 97, 67Google Scholar
  187. Pichon, Y. (1974) The pharmacology of the insect nervous system. In: Rockstein, M. (ed.) The physiology of Insecta, Vol. 4, pp. 101–74. Academic Press, New YorkGoogle Scholar
  188. Pichon, Y. (1976) Pharmacological properties of the ionic channels in insect axons. In: Spencer Davies, P. (ed.) Periplaneta in experimental biology, Vol. 1, pp. 297–312. Pergamon Press, OxfordGoogle Scholar
  189. Piek, T. (1982) 6-Philanthotoxin, a semi-irreversible blocker of ion channels. Comp. Biochem. Physiol. 72 C, 311Google Scholar
  190. Piek, T., Buitenhuis, A., Veldsema-Currie, R.D. and Mantel, P. (1983) Smooth muscle contracting factors in the venoms of sphecid wasps (Hym: Sphecidae) Comp. Biochem. Physiol. 75C, 153Google Scholar
  191. Piek, T., Dunbar, S.J., Kits, K.S., Van Marie, J. and Van Wilgenburg, H. (1985) PhilanthoToxins: a review of the diversity of actions on synaptic transmission. Pest. Sci. 16, 488Google Scholar
  192. Piek, T., Hue, B., Pelhate, M., David, J.A., Spanjer, W. and Veldsema-Currie, R.D. (1984) Effects of the venom of Philanthus triangulum F. (Hym. Sphecidae) and (3- and 6-philanthotoxin on axonal excitability and synaptic transmission in the cockroach CNS. Arch. Ins. Biochem. Physiol. 1, 297Google Scholar
  193. Piel, T., Mantel, P. and Engels, E. (1971) Neuromuscular block in insects caused by the venom of the digger wasp Philanthus triangulum. F.Comp. Gen. Pharmacol. 2, 317Google Scholar
  194. Piek, T., Mantel, P. and Jas, H. (1980a) Ion-channel block in insect muscle fibre membrane by the venom of the digger wasp Philanthus triangulum F. J. Insect Physiol. 26, 345Google Scholar
  195. Piek, T., May, T.E. and Spanjer, W. (1980b) Paralysis of locomotion in insects by the venom of the digger wasp Philanthus triangulum. In: Insect neurobiology and pesticide action (Neurotox 79), pp. 219–26. Society of Chemical Industry, London.Google Scholar
  196. Piek, T. and Simon-Thomas, R.T. (1969) Paralysing venoms of solitary wasps. Comp. Biochem. Physiol. 30, 13Google Scholar
  197. Piek, T. and Spanjer, W. (1986) Chemistry and pharmacology of solitary wasp venoms. In: Piek, T. (ed.) Venoms of the Hymenoptera, pp. 161–308. Academic Press, London and New YorkGoogle Scholar
  198. Piek, T., Spanjer, W., Veldsema-Currie, R.D., Van Groen, T., De Hanna, W. and Mantel, P. (1982a) Effect of venom of the digger wasp Philanthus triangulum F. on the sixth abdominal ganglion of the cockroach. Comp. Biochem. Physiol. 71C, 159Google Scholar
  199. Piek, T., Veenendaal, R.L. and Mantel, P. (1982b) The pharmacology of Microbracon venom. Comp. Biochem. Physiol. 72C, 303Google Scholar
  200. Possani, L.D., Dent, M.A.R., Martin, B.M., Maelicke, A. and Svendsen, I. (1981) The amino terminal sequence of several Toxins from the venom of the Mexican scorpion Centruroides noxius Hoffman. Carlsberg Res. Commun. 46, 207Google Scholar
  201. Quicke, D.L.J. (1985) Antagonism of locust muscle glutamate receptor-channel complexes by fractions of orb-web spider venoms. Neurotox 85, University of Bath, England, AbstractsGoogle Scholar
  202. Raftery, M.A., Hunkapiller, M.W., Strader, C.D. and Hood, L.E. (1980) Acetylcholine receptor: complex of homologous subunits. Science 208, 1454Google Scholar
  203. Rathmayer, W. (1962a) Paralysis caused by the digger wasp Philanthus. Nature (Lond.) 196, 1148Google Scholar
  204. Rathmayer, W. (1962b) Das Paralysierungsproblem beim Bienenwolf Philanthus triangulum F. (Hym. Sphee). Z. Vergl. Physiol. 45, 413Google Scholar
  205. Rathmayer, W. (1966) The effect of the poison of spider and digger wasps on the prey. Mem. Inst. Butantan Simp. Inst. 33, 651Google Scholar
  206. Rathmayer, W. (1978) Venoms of Sphecidae, Pompilidae, Multilidae and Bethylidae. In: Bettini, S. (ed.) Arthropod venoms, pp. 661–90. Springer, Berlin and New YorkGoogle Scholar
  207. Rathmayer, W., Ruhland, ML, Tintpulver, M., Walther, Ch. and Zlotkin, E. (1978) The effect of Toxins derived from the venom of the scorpion Androctonus austrails Hector on neuromuscular transmission. In: Rosenberg, P. (ed.) Toxins: animal, plant and microbial, pp. 629–37. Pergamon Press, Oxford and New YorkGoogle Scholar
  208. Rathmayer, W. and Walther, C. (1976) Mode of action and specificity of Habrobracon venom. In: Ohsaka, A., Hayashi, K. and Sawai, Y. (eds) Animal, plant and microbial Toxins, Vol. 2, pp. 299–307. Plenum Press, New YorkGoogle Scholar
  209. Rathmayer, W., Walther, Ch. and Zlotkin, E. (1977) The effect of different Toxins from scorpion venom on neuromuscular transmission and nerve action potentials in the crayfish. Comp. Biochem. Physiol 56C, 35Google Scholar
  210. Ray, R., Morrow, C.S. and Catterall, W.A. (1978) Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles. J. Biol. Chem. 253, 7307Google Scholar
  211. Ritchie, J.M., Rogart, R.B. and Strichartz, G.R. (1976) A new method for labelling saxitoxin and its binding to nonmyelinated fibers of the rabbit vagus, lobster walking leg and garfish olfactory nerves. J. Physiol. (Lond.) 261, AllGoogle Scholar
  212. Rochat, H., Bernard, P. and Couraud, F. (1979) Scorpion Toxins: chemistry and mode of action. In: Ceccarelli, B. and Clementi, F. (eds) Advances in cytopharmacology, Vol. 3, pp. 325–34. Raven Press, New YorkGoogle Scholar
  213. Rochat, H., Rochat, C., Kopeyan, C., Miranda, F., Lissitzky, S. and Edman, P. (1970) Scorpion neuroToxins — a family of homologous proteins. FEBS Lett. 10, 349Google Scholar
  214. Rochat, C., Rochat, H., Miranda, F. and Lissitzky, S. (1967) Purification and some properties of the neurotoxins of Androctonus australis Hector. Biochemistry 6, 578Google Scholar
  215. Romey, G., Abita, J.P., Schweitz, H., Wunderer, G. and Lazdunski, M. (1976) Sea anemone toxin: a tool to study molecular mechanism of nerve conduction and excitation-contraction coupling. Proc. Natl Acad. Sci. USA 73, 4055Google Scholar
  216. Romey, G., Chicheportiche, R., Lazdunski, M., Rochat, H., Miranda, F. and Lissitzky, S. (1975) Scorpion neurotoxin — a presynaptic toxin which affects both Na+ and K+ channels in axons. Biochem. Biophys. Res. Commun. 64, 115Google Scholar
  217. Romey, G., Renaud, J.F., Fosset, M. and Lazdunski, M. (1980) Pharmacological properties of the interaction of the sea anemone polypeptide toxin with cardiac cells in culture. J. Pharmacol. Exp. Ther. 213, 607Google Scholar
  218. Rosenberg, P. (ed.) (1978) Toxins: animal, plant and microbial. Pergamon Press, Oxford and New YorkGoogle Scholar
  219. Rosin, R. and Shulov, A. (1963) Studies on the scorpion Nebo hierochonticus. Proc. Zool. Soc. Lond. 140, 547Google Scholar
  220. Ruhland, M., Zlotkin, E. and Rathmayer, W. (1977) The effect of Toxins from the venom of the scorpion Androctonus australis on a spider nerve-muscle preparation. Toxicon 15, 157Google Scholar
  221. Saenger, W., Walkinshaw, M.D. and Maelicke, A. (1983) a-Cobratoxin and a- bungarotoxin, two members of the ‘long’ neurotoxin family — a structural comparison. In: Hucho, F. and Ovchinnikov, Yu. A. (eds) Toxins as tools in neurochemistry, pp. 151–7. De Gruyter, Berlin and New YorkGoogle Scholar
  222. Salikhov, S.I., Tashmukhamedov, M.S., Adylbekov, M.T., Abdurakhmanova, Ya., Korneev, A.S. and Sadykov, A.S. (1982a) Isolation and structural studies of neurotoxin from the venom of spider Latrodectus tredecimguttatus. Chem. Pept. Proteins Proc. USSR-FRG Symp. 3rd. 1980, 109Google Scholar
  223. Salikhov, S.I., Tashmukhamedov, M.S., Adylbekov, M.T., Korneev, A.S. and Sadykov, A.S. (1982b) Isolation and quaternary structure of neurotoxin from Latrodectus tredecimguttatus spider venom. Dokl. Acad. Nauk SSR 262, 485Google Scholar
  224. Satteile, D.B. (1985) Acetylcholine receptors. In: Kerkut, G.A. and Gilbert, L.I. (eds) Comprehensive insect physiology Biochemistry and pharmacology, Vol. Ü, pp. 395–434. Pergamon Press, Oxford and New YorkGoogle Scholar
  225. Schmidt, H. and Schmitt, O. (1974) Effect of aconitine on the sodium permeability of the node of Ranvier. Pflugers Arch. 349, 133Google Scholar
  226. Schmitt, O. and Schmidt, H. (1972) Influence of calcium ions on the ionic currents of nodes of Ranvier treated with scorpion venom. Pflugers Arch. 333, 51Google Scholar
  227. Schweitz, H., Bidard, J.N., Frelin, Ch., Pauron, D., Vijverberg, H.P.M., Mahasneh, D.M. and Lazdunski, M. (1985) Purification, sequence and pharmacological properties of sea anemone Toxins from Radianthus paumotensis. A new class of sea anemone Toxins acting on the sodium channel. Biochemistry 24, 3554Google Scholar
  228. Schweitz, H., Vincent, J.P., Barhanin, J., Frelin, Gh., Linden, G., Hugues, M. and Lazdunski M. (1981) Purification and pharmacological properties of eight sea anemone toxins from Anemonia sulcata, Anthopleura xanthogrammica, Stoichactis giganteus and Actinodendron plumosum. Biochemistry 20, 5245Google Scholar
  229. Sharkey, R.G., Beneski, D.A. and Catterall, W.A. (1984) Differential labeling of the a- and pj subunits of the sodium channel by photoreactive derivatives of scorpion toxin. Biochemistry 23, 78Google Scholar
  230. Spanjer, W., Grosu, L. and Piek, T. (1977) Two different paralysing preparations obtained from a homogenate of the wasp Microbracon hebetor (Say). Toxicon 15, 413Google Scholar
  231. Spanjer, W., May, T.E., Piek, T. and De Hann, W. (1982) Partial purification of components from the paralyzing venom of the digger wasp Philanthus triangulum F. (Hym. Sphec.) and their action on neuromuscular transmission in the locust. Comp. Biochem. Physiol. 71C, 149Google Scholar
  232. Stahnke, H.L. (1966) Some aspects of scorpions behavior. Bull. South Calif. Acad. Sci. 65, 65Google Scholar
  233. Steiner, A.L. (1962) Etude du comportement predateur d’un hymenoptere sphegien: Liris nigra V.D.L. (= Notogonia pompiliformis Pz). Ann. Sci. Nat. Zool (Ser. 12 ) 41Google Scholar
  234. Steiner, A.L. (1986) Stinging behavior of solitary wasps. In: Piek, T. (ed.) Venoms of the Hymenoptera, pp. 63–160. Academic Press, London and New YorkGoogle Scholar
  235. Strichartz, G.R. and Hansen-Bay, C.M. (1981) Saxitoxin binding in nerves from walking legs of lobster Homarus americanus. Two classes of receptors. J. Gen. Physiol. 77, 205Google Scholar
  236. Strichartz, G.R., Rogart, R.B. and Ritchic, J.M. (1979) The binding of radioactively labelled saxitoxin to the squid giant axon. J. Memb. Biol. 48, 357Google Scholar
  237. Takahashi, M., Ohizumi, Y. and Yasumoto, T. (1982) Maitotoxin: a Ca2+ channel activator candidate. J. Biol. Chem. 257, 7287Google Scholar
  238. Takahashi, M., Tatsumi, M., Ohizumi, Y. and Yasumoto, T. (1983) Ca2+ channel activating function of maitotoxin, the most potent marine toxin known, in clonal rat pheochromocytoma cells. J. Biol. Chem. 258, 10944Google Scholar
  239. Tamashiro, M. (1971) A biological study of venoms of two spccics of Br aeon. Tech. Bull. Hawaü Agric. Exp. Stn 70Google Scholar
  240. Tanaka, J.C., Eccleston, J.F. and Barchi, R.L. (1983) Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma. J. Biol. Chem. 258, 7519Google Scholar
  241. Teitelbaum, Z., Lazarovici, P. and Zlotkin, E. (1979) Selective binding of the scorpion venom insect toxin to insect nervous tissue. Insect Biochem. 9, 343Google Scholar
  242. Tintpulver, M., Zerachia, T. and Zlotkin, E. (1976) The action of toxins derived from scorpion venom on the ileal smooth muscle preparation. Toxicon 14, 311Google Scholar
  243. Toth, G.P. and Blumenthal, K.M. (1983) Structure and action of heteronemertine polypeptide toxins. Binding of Cerebratulus lacteus toxin B-IV to axon membrane vesicles. Biochim. Biophys. Acta 732, 160Google Scholar
  244. Tu, A.T. (1974) Sea snake venom and neurotoxins. J. Agric. Food Chem. 22, 36Google Scholar
  245. Tu, A.T. (1977) Venoms: chemistry and molecular biology. John Wiley, New York Tzeng, M.C., Cohen, R.S. and Siekevitz, P. (1978) Release of neurotransmitters and depletion of synaptic vesicles in cerebral cortex slices by a-latrotoxin from black widow spider venom. Proc. Natl Acad. Sci. USA 75 4016Google Scholar
  246. Ulbricht, W. (1969) The effect of veratridine on excitable membranes of nerve and muscle. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 61, 18Google Scholar
  247. Usherwood, P.N.R., Machili, P. and Leaf, G. (1968) L-Glutamate at insect excitatory nerve muscle synapses. Nature (Lond.) 219, 1169 Usherwood, P.N.R. ( 1982 ) Review of symposium. In: Ciba Foundation SymposiumGoogle Scholar
  248. 88.
    Neuropharmacology of insects, pp. 307–17. Pitman, London Usmanov, P.B., Kalikulov, D., Shadyeva, N.G., Nenilin, A.B. and Tashmukhamedov, B.A. (1985) Postsynaptic blocking of glutaminergic and cholinergic synapses as a common property of Araneidae spider venoms. Toxicon 23, 528Google Scholar
  249. Vachon, M. (1952) Etudes sur les scorpiones. Institute Pasteur de Algerie Vachon, M. (1953) The biology of scorpions. Endeavour 12, 80Google Scholar
  250. Van Marie, J., Piek, T., Lind, A. and Van Weeren-Kramer, J. (1985) Specificity of two insect Toxins as inhibitors of high affinity transmitter uptake. Comp. Biochem. Physiol. 28C, 435Google Scholar
  251. Van Marie, J., Piek, T., Lind, A. and Van Weeren-Kramer, J. (1986) Reduction of high affinity glutamate uptake in rat hippocampus by two polyamine-like Toxins isolated from the venom of the predatory wasp Philanthus triangulum F. Experientia 42, 157Google Scholar
  252. Van Rietschoten, J., Granier, C., Rochat, H., Lissitzky, S. and Miranda, F. (1975) Synthesis of apamin, a neurotoxic peptide from bee venom. Eur. J. Biochem. 56, 35Google Scholar
  253. Van Wilgenburg, H., Piek, T. and Mantel, P. (1984) Ion channel block in rat diaphragm by the venom of the digger wasp Philanthus triangulum. Comp. Biochem. Physiol. 79C, 205Google Scholar
  254. Visser, B.J., Labruyere, W.T., Spanjer, W. and Piek, T. (1983) Characterization of two paralysing protein Toxins (A-MTX and B-MTX), isolated from a homogenate of the wasp Microbracon hebetor (Say). Comp. Biochem. Physiol. 75B, 523Google Scholar
  255. Walther, C. and Rathmayer, W. (1974) The effect of Habrobracon venom on excitatory neuromuscular transmission in insects. J. Comp. Physiol 89, 23Google Scholar
  256. Walther, C. and Reinecke, M. (1983) Block of synaptic vesicle exocytosis without block of Ca2+ influx. An ultrastructural analysis of the paralyzing action of Habrobracon venom on locust motor nerve terminals. Neuro Science 9, 213Google Scholar
  257. Walther, C., Zlotkin, E. and Rathmayer, W. (1976) Action of different toxins from the scorpion Androctonus australis on a locust nerve-muscle preparation. J. Insect Physiol. 22, 1187Google Scholar
  258. Watt, D.D., Simard, J.M., Babin, D.R. and Mlejnek, R.V. (1978) Physiological characterization of Toxins isolated from scorpion venom. In: Rosenberg, P. (ed.) toxins: animal plant and microbial, pp. 647–60. Pergamon Press, OxfordGoogle Scholar
  259. Weiland, G.A. and Molinoff, P.B. (1981) Quantitative analysis of drug-receptor interactions. I. Determination of kinetic and equilibrium properties. Life Sci. 29, 313Google Scholar
  260. Wernike, J.F., Vanker, A.D. and Howard, B.D. (1975) The mechanism of action of p-bungarotoxin. J. Neurochem. 25, 483Google Scholar
  261. Witkop, B. and Brossi, A. (1984) Natural Toxins and drug development. In: Krogs- gaard-Larsen, P., Christensen, S.B. and Kofod, H. (eds) Natural products and drug development, pp. 283–300. Munksgaard, CopenhagenGoogle Scholar
  262. Wunderer, G. and Eulitz, M. (1978) Amino acid sequence of toxin I from Anemonia sulcata. Eur. J. Biochem. 89, 11Google Scholar
  263. Wunderer, G., Fritz, H., Wachter, E. and Machleidt, W. (1976) Amino acid sequence of a coelenterate toxin: Toxin Ü from Anemonia sulcata. Eur. J. Biochem. 68, 193Google Scholar
  264. Yasumoto, T., Nakajima, I., Oshima, Y. and Bagnis, R. (1979) A new toxic dinofla- gellate found in association with ciguatera. In: Taylor, D.L. and Seligen, H. (eds) Toxic dinoflagellate blooms, pp. 65–70 Elsevier, North Holland, New YorkGoogle Scholar
  265. Zhdanova, L.N., Adamovich, T.B., Nazimov, I.V., Grishin, E.V. and Ovchinnikov, Yu. A. (1977) Amino acid sequence of insectotoxin I, from the venom of the central Asian scorpion Buthus epeus. Biorg. Kim. (USSR) 3, 485Google Scholar
  266. Zlotkin, E. (1973) Chemistry of animal venoms. Experientia 29, 1453 Zlotkin, E. (1985) Toxins derived from arthropod venoms specifically affecting insects. In: Kerkut, G.A. and Gilbert, L.I. (eds) Comprehensive insect physiology, Biochemistry and pharmacology, Vol. 10, pp. 499–546. Pergamon Press, OxfordGoogle Scholar
  267. Zlotkin, E., Fraenkel, G., Miranda, F. and Lissitzky, S. (1971a) The effect of scorpion venom on blowfly larvae; a new method for the evaluation of scorpion venom potency. Toxicon 9, 1Google Scholar
  268. Zlotkin, E. and Gordon, D. (1985) Detection, purification and receptor binding assays of insect selective neurotoxins derived from scorpion venom. In: Breer, H. and Miller, T.A. (eds) Neurochemical techniques in insect research, pp. 243–95. Springer, Berlin and New YorkGoogle Scholar
  269. Zlotkin, E., Kadouri, D., Gordon, D., Pelhate, M., Martin, M.F. and Rochat, H. (1985) An excitatory and a depressant insect toxin from scorpion venom — both affect sodium conductance and possess a common binding site. Arch. Biochem. Biophys. 240, 877Google Scholar
  270. Zlotkin, E., Lebovits, N. and Shulov, A. (1972c) Toxic effects of the venom of the scorpion Scorpio maurus palmatus (Seorpionidae). Riv. Parassit. 33, 237Google Scholar
  271. Zlotkin, E., Lebovits, N. and Shulov, A. (1973) Hemolytic action of the venom of the scorpion Scorpio maurus palmatus (Seorpionidae). In: Kaiser, E. (ed.) Animal and plant toxins, pp. 67–72.Google Scholar
  272. Goldman, Munich Zlotkin, E., Martinez, G., Rochat, H. and Miranda, F. (1975) A protein toxic to Crustacea from the venom of the scorpion Androctonus australis. Insect Biochem 5, 243Google Scholar
  273. Zlotkin, E., Miranda, F., Kupeyan, G. and Lissitzky, S. (1971b) A new toxic protein in the venom of the scorpion Androctonus australis Hector. Toxicon 9, 9Google Scholar
  274. Zlotkin, E., Miranda, F. and Lissitzky, S. (1972a) A factor toxic to crustaceans in the venom of the scorpion Androctonus australis Hector. Toxicon 10, 211Google Scholar
  275. Zlotkin, E., Miranda, F. and Lissitzky, S. (1972b) Proteins in scorpion venoms toxic to mammals and insects. Toxicon 10, 207Google Scholar
  276. Zlotkin, E., Miranda, F. and Rochat, H. (1978) Chemistry and pharmacology of Buthinae scorpion venoms. In: Bettini, S. (ed.) Arthropod venoms, pp. 317–69. Springer, Berlin and New YorkGoogle Scholar
  277. Zlotkin, E., Rochat, H., Kupeyan, C., Miranda, F. and Lissitzky, S. (1971c) Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie (Paris) 55, 1073Google Scholar
  278. Zlotkin, E., Teitelbaum, Z., Rochat, H. and Miranda, F. (1979) The insect toxin from the venom of the scorpion Androctonus mauretanicus. Purification, characterization and specificity. Insect Biochem. 9, 347Google Scholar

Copyright information

© G.G. Lunt and R.W. Olsen 1988

Authors and Affiliations

There are no affiliations available

Personalised recommendations