Skip to main content

Abstract

Various animals employ toxic substances in order to capture their prey or to deter their enemies (Zlotkin, 1973). They can be subdivided into (a) venomous animals — which possess the proper instrumentation for stinging-piercing and the time- and site-directed introduction of their mixtures of toxic substances (defined as venoms) into the circulation or tissues of their prey or opponent; (b) poisonous animals which are devoid of the apparatus for stinging and employ toxic substances for defensive purposes (Blum, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Alema, S. and Miledi, R. (1977) Isolation and characterization of presynaptically acting neuroToxins from the venom of Bungarus snakes. Eur. J. Biochem. 80, 1

    Google Scholar 

  2. Abe, T., Kawai, N. and Niwa, A. (1983) Effects of spider toxin on the glutaminergic synapse of lobster muscle. J. Physiol 339, 243

    Google Scholar 

  3. Abe, T., Limbrick, A.R. and Miledi, R. (1976) Acute muscle denervation induced by a-bungarotoxin. Proc. R. Soc. LondL B. Biol. Sci. 194, 545

    Google Scholar 

  4. Abelson, P.H. (1983) Biotechnology: an overview. Science 219, 611

    Google Scholar 

  5. Abia, A., Lobaton, C.D., Moreno, A. and Garcia-Sancho, Y. (1986) Leiurus quinquestriatus venom inhibits different kinds of Ca-dependent K+ channels. Biochim. Biophys. Acta 856, 403

    Google Scholar 

  6. Albuquerque, E.X. and Daly, J.W. (1976) Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In: Cuatrecasas, P. (ed.) Receptors and recognition, pp. 299–336. Chapman & Hall, London

    Google Scholar 

  7. Albuquerque, E.X. and Daly, J. (1977) Steroidal alkaloid toxin and ion transport in electrogenic membranes. In: Cuatrecasas, P. (ed.) The specificity and action of animal, bacterial and plant toxin, pp. 279–338. Chapman & Hall, London

    Google Scholar 

  8. Aliens, E.J. (1979) Receptors from fiction to fact. Trends Pharm. Sci., inaugural issue, 11

    Google Scholar 

  9. Baba, A. and Cooper, J.R. (1980) The action of black widow spider venom on cholinergic mechanisms in synaptosomes. J. Neurochem. 34, 1369

    Google Scholar 

  10. Babin, D.R., Watt, D.D., Goos, S.M. and Mlejnek, R.V. (1974) Amino acid sequences of neurotoxin protein variants from the venom of Centruroides sculpturatus Ewing. Arch. Biochem. Biophys. 164, 694

    Google Scholar 

  11. Babin, D.R., Watt, D.D., Goos, S.M. and Mlejnek, R.V. (1975) Amino acid sequences of neurotoxin I from Centruroides sculpturatus Ewing. Arch. Biochem. Biophys. 166, 125

    Google Scholar 

  12. Baguis, R., Chanteau, S., Chungue, E., Hartel, J.M., Yasumoto, T. and Inone, A. (1980) Origins of ciguatera fish poisoning: a new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. Toxicon 18, 199

    Google Scholar 

  13. Barchi, R.L. (1983) Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J. Neurochem. 40, 1377

    Google Scholar 

  14. Barhanin, J., Hugues, M., Schweitz, H., Vincent, J-P. and Lazdunski, M. (1981) Structure-function relationships of sea anemone toxin Ü from Anemonia sulcata. J. Biol. Chem. 256, 5764

    Google Scholar 

  15. Beard, R.L. (1963) Insect Toxins and venoms. Ann. Rev. Ent. 8, 1 Beard, R.L. (1978) Venoms of Braconidae. In: Bettini, S. (ed.) Arthropod venoms,pp. 773–800. Springer, Berlin and New York

    Google Scholar 

  16. Bearg, W.J. (1959) The black widow and five other venomous spiders in the United States. Agr. Exp. Stn. Arkansas Univ. Bull. 608

    Google Scholar 

  17. Bearg, W.J. (1961) Scorpions biology and effect of the venom. Univ. Kansas Agric. Exp. Stn. Bull. 649

    Google Scholar 

  18. Beneski, D.A. and Catterall, W.A. (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. Natl Acad. Sci. USA 77, 639

    Google Scholar 

  19. Benzer, T.I. and Raftery, M.A. (1973) Solubilization and partial characterization of the tetrodotoxin binding component from nerve axons. Biochem. Biophys. Res. Commun. 51, 939

    Google Scholar 

  20. Beress, L. (1982) Biologically active compounds from coelenterates. Pure and Appl. Chem. 54, 1981

    Google Scholar 

  21. Beress, L., Wunderer, G. and Wachter, E. (1977) Amino acid seqence of toxin ÜI from Anemonia sulcata. Hoppe-Seyler’s Z. Physiol Chem. 358, 985

    Google Scholar 

  22. Bergman, C., Dubois, J.M., Rojas, E. and Rathmayer, W. (1976) Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim. Biophys. Acta 455, 173

    Google Scholar 

  23. Bernheimer, A.W. and Avigad, L.S. (1981) New cybolysins in the sea anemones from the West Coast of the United States. Toxicon 19, 529

    Google Scholar 

  24. Bernheimer, A.W. and Avigad, L.S. (1982) Toxins of the sea anemone Epiactis prolifera. Arch. Biochem. Biophys. 217, 174

    Google Scholar 

  25. Berwald-Netter, Y., Martin-Moutot, N., Kaoulakoff, A. and Couraud, F. (1981), Na+-channel associated scorpion toxin receptor sites as probes for neuronal evolution in vivo and in vitro. Proc. Natl Acad. Sci. USA 78, 1245

    Google Scholar 

  26. Bettini, S. and Maroli, M. (1978) Venoms of Theridüdae, genus Latrodectus. A. Systematics, distribution and biology of species: chemistry, pharmacology and mode of action of venom. In: Bettini, S. (ed.) Arthropod venoms, pp. 149–85. Springer, Berlin and New York

    Google Scholar 

  27. Bidard, J.N., Vijverberg, H.N.P., Frelin, Ch., Chungue, E., Legrand, A.M., Bagnis, R. and Lazdunski, M. (1984) Ciguatoxin is a novel type of Na+ channel toxin. J. Biol. Chem. 259, 8353

    Google Scholar 

  28. Blanquet, R. (1968) Properties and composition of the nematocyst toxin of the sea anemone, Aiptasia pallida. Comp. Biochem. Physiol. 25, 893

    Google Scholar 

  29. Blum, M.S. (1981) Chemical defenses of arthropods. Academic Press, New York and London

    Google Scholar 

  30. Blumenthal, K.M. (1980) Structure and action of heteronemertine polypeptide Toxins: inactivation of Cerebratulus lacteus toxin B-IV concomitant with tryptophan alkylation. Arch. Biochem. Biophys. 203, 822

    Google Scholar 

  31. Blumenthal, K.M. (1982) Structure and action of heteronemertine polypeptide Toxins. Membrane penetration by Cerebratulus lacteus toxin A-ÜI. Biochemistry 21, 4229

    Google Scholar 

  32. Blumenthal, K.M. (1986) Renaturation of neurotoxin B-IV from the heteronemertine Cerebratulus lacteus. Toxicon 24, 63

    Google Scholar 

  33. Blumenthal, K.M. and Kem, W.R. (1976) Structure and action of heteronemertine polypeptide Toxins. Primary structure of Cerebratulus lacteus toxin B-IV. J. Biol. Chem. 251, 6025

    Google Scholar 

  34. Blumenthal, K.M. and Kem, W.R. (1977) Structure and action of heteronemertine polypeptide Toxins. Disulfide bonds of Cerebratulus lacteus toxin B-IV. J. Biol. Chem. 252, 3328

    Google Scholar 

  35. Blumenthal, K.M. and Kem, W.R. (1980a) Structure and action of heteronemertine polypeptide Toxins: inactivation of Cerebratulus lacteus toxin B-IV by tyrosine nitration. Arch. Biochem. Biophys. 203, 816

    Google Scholar 

  36. Blumenthal, K.M. and Kem, W.R. (1980b) Structure-function relationships in Cerebratulus toxin B-IV. In: Eaker, D. and Wandstrom, T. (eds) Natural Toxins, pp. 487–92. Pergamon Press, Oxford and New York

    Google Scholar 

  37. Blumenthal, K.M., Keim, P.S., Heinrikson, R.L. and Kem, W.R. (1981) Structure and action of heteronemertine polypeptide toxins. Amino acid sequence of Cerebratulus lacteus toxin B-Ü and revised structure of toxin B-IV. J. Biol Chem. 256, 9063

    Google Scholar 

  38. Brazil, O.V., Neder, A.C. and Corrado, A.P. (1973) Effects and mechanism of action of Tityus serrulatus venom on skeletal muscle. Pharmacol Res. Commun. 5, 137

    Google Scholar 

  39. Breer, H. (1981) Properties of putative nicotinic and muscarinic cholinergic receptors in the central nervous system of Locusta migratoria. Neurochem. Int. 13, 43

    Google Scholar 

  40. Breer, H. (1983a) Venoms and toxins in neurochemical research of insects. In: Hucho, F. and Ovchinnikov, Y.A. (eds) Toxins as tools in neurochemistry, pp. 115–25. De Gruyter, Berlin and New York

    Google Scholar 

  41. Breer, H. and Jeserich, G. (1980) A microscale flotation technique for the isolation of synaptosomes from the nervous tissue of Locusta migratoria. Insect Biochem. 10, 457

    Google Scholar 

  42. Breer, H., Kleene, R. and Hinz, G. (1985) Molecular forms and subunit structure of the acetylcholine acceptor in the central nervous system of insects. J. Neurosci. 5, 3386

    Google Scholar 

  43. Brownell, P.H. (1984) Prey detection by the sand scorpion. Sci. Amer. 251, 94

    Google Scholar 

  44. Bucherl, W. (1971) Classification biology and venom extraction of scorpions. In: Bucherl, W. and Buckley, E. (eds) Venomous animals and their venoms, Vol 3, Venomous invertebrates, pp. 317–46. Academic Press, New York

    Google Scholar 

  45. Cahalan, M.D. (1975) Modification of sodium channel gating of frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J. Physiol (Lond.) 244, 511

    Google Scholar 

  46. Carbone, E., Wanke, E., Prestipino, G., Possani, L.D. and Maelicke, A. (1982) Selective blockage of voltage-dependent K+ channels by a novel scorpion toxin. Nature (Lond.) 296, 90

    Google Scholar 

  47. Catterall, W.A. (1975a) Activation of the action potential sodium ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J. Biol Chem. 250, 4053

    Google Scholar 

  48. Catterall, W.A. (1975b) Cooperative activation of the action potential Na+ iono-phore by neuroToxins. Proc. Natl Acad. Sci. USA 72, 1782

    Google Scholar 

  49. Catterall, W.A. (1977a) Membrane potential dependent binding of scorpion toxin to the action potential sodium ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalysed iodination. J. Biol Chem. 252, 8660

    Google Scholar 

  50. Catterall, W.A. (1977b) Activation of the action potential Na+ ionophore by neuroToxins. An allosteric model. J. Biol Chem. 252, 8669

    Google Scholar 

  51. Catterall, W.A. (1979) Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation with voltage-dependent activation. J. Gen. Physiol 74, 375

    Google Scholar 

  52. Catterall, W.A. (1980) NeuroToxins that act on voltage-sensitive sodium channels in excitable membranes. Am. Rev. Pharmacol Toxicol 20, 15

    Google Scholar 

  53. Catterall, W.A. (1981) Localization of sodium channels in cultured neural cells. J. Neurosci. 1, 111

    Google Scholar 

  54. Catterall, W.A. (1984) The molecular basis of neuronal excitability. Science 223, 653

    Google Scholar 

  55. Catterall, W.A. (1985) The electroplax sodium channel revealed. Trends Neurosci. 8, 39

    Google Scholar 

  56. Catterall, W.A. (1986) Voltage-dependent gating of sodium channels: correlating structure and function. Trends Neurosci. 9, 1

    Google Scholar 

  57. Catterall, W.A. and Beress, L. (1978) Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential Na+ ionophore. J. Biol. Chem. 253, 7393

    Google Scholar 

  58. Catterall, W.A. and Morrow, C.S (1978) Binding of saxitoxin to electrically excit-able neuroblastoma cells. Proc. Natl Acad. Sci. USA 75, 218

    Google Scholar 

  59. Changeux, J.P., Kasai, M. and Lee, C.Y. (1970) Use of snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl Acad Sci, USA 67, 1241

    Google Scholar 

  60. Chibber, B.A., Martin, B.M., Walkinshaw, M.D., Saenger, W. and Maelicke, A. (1983) The sites of neurotoxicity in a-cobratoxin. In: Hucho, F. and Ovchinnikov, Y.A. (eds) Toxins as tools in neurochemistry, pp. 141–50. De Gruyter, Berlin and New York

    Google Scholar 

  61. Clark, A.W., Mauro, A., Longenecker, H. and Hurlbut, W.P. (1970) Effects of black widow spider venom on the frog neuromuscular junction. Nature (Lond.) 225, 703

    Google Scholar 

  62. Clark, R.B., Donaldson, P.L., Gration, K.A.F., Lambert, J.J., Piek, T., Spanjer, W. and Usherwood, P.N.R. (1980) Post-synaptic block at neuromuscular function on locust muscle by d-philanthotoxin. J. Physiol. (Lond.) 310, 8 P

    Google Scholar 

  63. Clark, R.B., Donaldson, P.L., Gration, K.A.F., Lambert, J.J., Piek, T., Ramsey, R., Spanjer, W. and Usherwood, P.N.R. (1982) Block of locust muscle glutamate receptor by d-philanthotoxin occurs after receptor activations. Brain Res.241, 105

    Google Scholar 

  64. Couraud, F. and Jover, E. (1984) Mechanism of action of scorpion Toxins. In: Tu, A.T. (ed.) Handbook of natural Toxins, vol. 2, pp. 659–78. Marcel Dekker, New York and Basle

    Google Scholar 

  65. Couraud, F., Jover, E., Dubois, J.M. and Rochat, H. (1982) Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20, 9

    Google Scholar 

  66. Couraud, F., Rochat, H. and Lissitzky, S. (1978) Binding of scorpion and sea anemone neuroToxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells. Biochem. Biophys. Res. Commun. 83, 1525

    Google Scholar 

  67. Crosland, R.D., Hsiao, T.H. and McClure, W.O. (1984) Purification and characterization of a-leptinotarsin-h, an activator of presynaptic calcium channels. Biochemistry 23, 734

    Google Scholar 

  68. Cruz, L.J., Gray, W.R., Olivera, B.M., Zeikus, R.D., Kerr, L., Yoshikami, D. and Moczydlowski, E. (1985) Conus geographicus Toxins that discriminate between neuronal and muscle sodium channels. J. Biol. Chem. 260, 9280

    Google Scholar 

  69. Cull-Candy, S.G., Neal, H. and Usherwood, P.N.R. (1973) Action of black widow spider venom on an aminergic synapse. Nature (Lond.) 241, 353

    Google Scholar 

  70. Curtis, D.R. and Johnston, G.A.R. (1974) Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97

    Google Scholar 

  71. D’Ajello, V., Magni, F. and Bettini, S. (1971) The effect of the venom of the black widow spider Latrodectus mactans tredecimguttatus on the giant neurones of Periplaneta americana. Toxicon 9, 103

    Google Scholar 

  72. Darbon, H., Jover, E., Couraud, F. and Rochat, H. (1983) Photoaffinity labeling of a- and ß-scorpion toxin receptors associated with rat brain sodium channel. Biochem. Biophys. Res. Commun. 115, 415

    Google Scholar 

  73. Darbon, H., Zlotkin, E., Kopeyan, C, Van Rietschoten, J. and Rochat, H. (1982) Covalent structure of the insect toxin of the North African scorpion Androctonus australis hector. Int. J. Peptide Protein Res. 20, 320

    Google Scholar 

  74. Deitmer, J.W. (1973) Die Wirkung des Giftes der Schlupfwespe Habrobracon hebetor (Say) auf die Neuromuskuläre Übertragung am Sartoriusmuskel des Frosches. Diplomarbeit, Universität Bonn

    Google Scholar 

  75. Drenth, D. (1974a) Stability of Microbracon hebetor (Say) venom preparation. Toxicon 12, 541

    Google Scholar 

  76. Drenth, D. (1974b) Susceptibility of different species of insects to an extract of the venom gland of the wasp Microbracon hebetor (Say). Toxicon 12, 189

    Google Scholar 

  77. Dudai, Y. (1978) Properties of an a-bungarotoxin binding to cholinergic nicotinic receptor from Drosophila melanogaster. Biochim. Biophys. Acta 539, 505

    Google Scholar 

  78. Dunbar, S.J. and Piek, T. (1983) The action of iontophoretically applied L-glutamate on an insect visceral muscle. Arch. Ins. Biochem. Physiol. 1, 93

    Google Scholar 

  79. Eaker, D. and Wandstrom, T. (eds) (1980) Natural Toxins. Pergamon Press, Oxford and New York

    Google Scholar 

  80. Farmer, P.S. (1980) Bridging the gap between bioactive peptides and nonpeptides: some perspectives in design. In: Ariens, E.J. (ed.) Drug design, Vol. 10, pp. 119–43. Academic Press, New York and London

    Google Scholar 

  81. Finkelstein, A., Rubin, L.L. and Tzeng, M.C. (1976) Black widow spider venom: effect of the purified toxin on lipid bilayer membranes, Science 193, 1009

    Google Scholar 

  82. Fosset, M., Schmid-Antomarchi, H., Hugues, M., Romey, G. and Lazdunski, M. (1984) The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide that specifically blocks Ca2+ dependent K+ channels. Proc. Natl Acad. Sci. USA 81, 7228

    Google Scholar 

  83. Fritz, L.C., Tzeng, M.C. and Mauro, A. (1980) Different components of black widow spider venom mediate transmitter release at vertebrate and lobster neuromuscular junctions. Nature (Lond.) 283, 486

    Google Scholar 

  84. Frontali, N., Ceccarelli, B., Gorio, A., Mauro, A., Siekevitz, P., Tzeng, M.C. and Hurlbut, W.P. (1976) Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J. Cell Biol. 68, 462

    Google Scholar 

  85. Frontali, N. and Grasso, A. (1964) Separation of three toxicologically different protein components from the venom of the spider Latrodectus tredecimguttatus. Arch. Biochem. Biophys. 106, 213

    Google Scholar 

  86. Gerschenfeld, H.M. (1973) Chemical transmission in invertebrate central nervous system and neuromuscular junctions. Physiol. Rev. 53, 1

    Google Scholar 

  87. Gitschier, J., Strichartz, G.R. and Hall, L.M. (1980) Saxitoxin binding to sodium channels in head extracts from wild-type and tetrodotoxin sensitive strains of Drosophila melanogaster. Biochim. Biophys. Acta 595, 291

    Google Scholar 

  88. Glatz, L. (1969) Correlations entre la capture de la proie et les structures des pieces buccales chez les Uloboridae. Bull. Mus. Nat. Hist. Natur. 41, 65

    Google Scholar 

  89. Gordon, D., Jover, E., Couraud, F. and Zlotkin, E. (1984) The binding of the insect selective neurotoxin (AalT) from scorpion venom to locust synaptosomal membranes. Biochim. Biophys. Acta 778, 349

    Google Scholar 

  90. Gordon, D., Zlotkin, E. and Catterall, W.A. (1985) The binding of an insect selective neurotoxin and saxitoxin to insect neuronal membranes. Biochim. Biophys. Acta 821, 130

    Google Scholar 

  91. Gordon, D., Zlotkin, E. and Kanner, B. (1982) Functional membrane vesicles from the nervous system of insects. I. Sodium and chloride dependent cx-aminobutyric acid transport. Biochim. Biophys. Acta 688, 229

    Google Scholar 

  92. Goyffon, M. and Kovoor, J. (1978) Chactoid venoms. In: Bettini, S. (ed.) Arthropod venoms, pp. 395–418. Springer, Berlin and New York

    Google Scholar 

  93. Grasso, A. (1976) Preparation and properties of a neurotoxin from the venom of black widow spider (Latrodectus mactans tridecimguttatus). Biochim. Biophys. Acta 439, 406

    Google Scholar 

  94. Grasso, A. and Paggi, P. (1967) Effect of Latrodectus mactans tredecimguttatus venom on the crayfish stretch receptor neurone. Toxicon 5, 1

    Google Scholar 

  95. Grasso, A. and Senni, M.I. (1979) A toxin purified from the venom of black widow spider affects uptake and release of radioactive y-aminobutyrate and N-epinephrine from rat brain synaptosomes. Eur. J. Biochem. 102, 337

    Google Scholar 

  96. Gray, W.R., Lugue, A. and Olivera, B.M. (1981) Peptide Toxins from Conus geographicus venom. J. Biol. Chem. 256, 4734

    Google Scholar 

  97. Gregoire, J. and Rochat, H. (1983) Covalent structure of toxin I and Ü from the scorpion Buthus occitanus tunetanus. Toxins 21, 153

    Google Scholar 

  98. Griffiths, D.J.G. and Smyth, T., Jr (1973) Action of black widow spider venom of insect neuromuscular junctions. Toxicon 11, 369

    Google Scholar 

  99. Grishin, E.V., Volkova, T.M. and Soldatova, L.N. (1982) A study of the toxic component of the venom of the Caucasian subspecies of the scorpion Buthus epeus. Biorg. Khim (USSR) 8, 155

    Google Scholar 

  100. Gruener, R. (1973) Excitability blockage of the squid giant axon by the venom of Latrodectus mactans (black widow spider). Toxicon 11, 155

    Google Scholar 

  101. Habermann, E. (1971) Chemistry, pharmacology and toxicology of bee, wasp and hornet venom. In: Bucherl, W. and Buckley, E. (eds) Venomous invertebrates, pp. 61–89. Academic Press, New York

    Google Scholar 

  102. Harris, R., Cattell, K.J. and Donnellan, J.F. (1980) Characterization of a-bungaro- toxin binding to homogenates of housefly brain. In: Insect neurobiology and pesticide action (Neurotox 79), pp. 209–12. Society of Chemical Industry, London

    Google Scholar 

  103. Harrow, I.D., Hue, B., Gepner, J.I., Hall, L.M. and Sattelle, D.B. (1980) An abungarotoxin sensitive acetylcholine receptor in the central nervous system of the cockroach (Periplaneta americana L.). In: Insect neurobiology and pesticide action (Neurotox 79), pp. 137–44. Society of Chemical Industry, London

    Google Scholar 

  104. Hartshorne, R.P. and Catterall, W.A. (1984) The sodium channel from rat brain: purification and subunit composition. J. Biol. Chem. 259, 1667

    Google Scholar 

  105. Hartshorne, R.P., Messner, D.J., Coppersmith, J.C. and Catterall, W.A. (1982) The saxitoxin receptor of the sodium channel from rat brain. Evidence for two non- identical subunits. J. Biol. Chem. 257, 13888

    Google Scholar 

  106. Henderson, R. and Wang, J.H. (1972) Solubilization of a specific tetrodotoxin binding component from garfish olfactory nerve membranes. Biochemistry 11, 4565

    Google Scholar 

  107. Herzog, W.H., Feibel, R.M. and Bryant, S.H. (1974) Effect of aconitine on the giant axon of the squid. J. Gen. Physiol. 47, 119

    Google Scholar 

  108. Hessinger, D.A. and Lenhoff, H.M. (1973) Assay and properties of hemolysis activity of pure venom from the nematocysts of the acontia of the sea anemone Aiptasia pallida. Arch. Biochem. 159, 629

    Google Scholar 

  109. Hille, B. (1968) Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51, 199

    Google Scholar 

  110. Hille, B. (1971) The permeability of the sodium channel to organic cations in myelinated nerve. J. Gen. Physiol 58, 599

    Google Scholar 

  111. Hille, B. (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys. J. 75, 615

    Google Scholar 

  112. Howard, B.D. and Gundersen, C.B. (1980) Effects and mechanisms of polypeptide neuroToxins that act presynaptically. Ann. Rev. Pharmacol. Toxicol. 20, 307

    Google Scholar 

  113. Hu, S.L. and Kao, G.Y. (1986) The pH dependence of the tetrodotoxin-blockade of the sodium channel and implications for toxin binding. Toxicon 24, 25

    Google Scholar 

  114. Hucho, F. and Ovchinnikov, Y.A. (eds) (1983) Toxins as tools in neurochemistry. De Gruyter, Berlin and New York

    Google Scholar 

  115. Hugues, M., Romey, G., Duval, D., Vincent, J.P. and Lazdunski, M. (1982a) Apamin as a selective blocker of the calcium dependent potassium channel in neuroblastoma cells; voltage clamp and biochemical characterization of the toxin receptor. Proc. Natl Acad. ScL USA 79, 1308

    Google Scholar 

  116. Hugues, M., Schmid, H. and Lazdunski, M. (1982b) Identification of a protein component of the Ca2+ dependent K+ channel by affinity labelling with apamin. Biochem. Biophys. Res. Commun. 107, 1577

    Google Scholar 

  117. Jackson, F.R., Wilson, S.D., Strichartz, G.R. and Hall, L.M. (1984) Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster. Nature (Lond.) 308, 189

    Google Scholar 

  118. Jacques, Y., Fosset, M. and Lazdunski, M. (1978) Molecular properties of the action potential Na+ ionophore in neuroblastoma cells. J. Biol. Chem. 253, 7383

    Google Scholar 

  119. Jaimovich, E., Ildefonse, M., Barhanin, J., Rougier, O. and Lazdunski, M. (1982) Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle voltage-clamp analysis and biochemical characterization of the receptor. Proc. Natl Acad. Sci. USA 79, 3896

    Google Scholar 

  120. Jover, E., Couraud, F. and Rochat, H. (1980) Two types of scorpion neuroToxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Commun. 95, 1607

    Google Scholar 

  121. Kagan, B.L., Pollard, H.B. and Hanna, R.B. (1982) Induction of ion-permeable channels by the venom of the fanged bloodworm Glycera dibranchiata. Toxicon 20, 887

    Google Scholar 

  122. Katz, N.L. and Edwards, C.H. (1972) The effect of scorpion venom on the neuro-muscular junction of the frog. Toxicon 10, 133

    Google Scholar 

  123. Kawai, N., Mauro, A. and Grundfest, H. (1972) Effect of black widow spider venom on the lobster neuromuscular junctions. J. Gen. Physiol. 60, 650

    Google Scholar 

  124. Kawai, N., Niwa, A. and Abe, T. (1982a) Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Res. 247, 169

    Google Scholar 

  125. Kawai, N., Niwa, A. and Abe, T. (1982b) Effect of a spider toxin on glutaminergic synapses in the mammalian brain. Biomed. Res. 3, 353

    Google Scholar 

  126. Kawai, N., Niwa, A. and Abe, T. (1983a) Specific antagonism of the glutamate receptor by an extract from the venom of the spider Araneus ventricosus. Toxicon 21, 438

    Google Scholar 

  127. Kawai, N., Niwa, A. and Abe, T. (1983b) Block of glutamate receptors by a spider toxin. In: Mandel, P. and De Fendis, F.V. (eds) CNS receptors —from molecular pharmacology to behavior, pp. 221–7. Raven Press, New York

    Google Scholar 

  128. Kem, W.R. (1973) Biochemistry of nemertine Toxins. In: Martin, D.F. and Padilla, G.M. (eds) Marine pharmacognosy, pp. 38–84. Academic Press, New York

    Google Scholar 

  129. Kem, W.R. (1976) Purification and characterization of a new family of polypeptide neurotoxins from the heteronemertine Cerebratulus lacteus (Leidy). J. Biol. Chem. 251, 4189

    Google Scholar 

  130. Kem, W.R. and Blumenthal, K.M. (1978b) Polypeptide cytolysins and neuroToxins isolated from the mucus secretions of the heteronerpertine Cerebratulus lacteus (Leidy). In: Rosenberg, P. (ed.) Toxins — animal, plant and microbial, pp. 509- 16. Pergamon Press, Oxford and New York

    Google Scholar 

  131. Kem, W.R., Scott, K.N. and Duncan, J.H. (1976) Hoplonemertine worms — a new source of pyridine neurotoxins. Experientia 32, 684

    Google Scholar 

  132. Kerr, L. and Yoshikami, D. (1984) A venom peptide with a novel presynaptic blocking action. Nature (Lond.) 308, 282

    Google Scholar 

  133. Kobayashi, J., Nakamura, H., Hirata, Y. and Ohizumi, Y. (1983) Tessulatoxin, the vasoactive protein from the venom of the marine snail Conus tessulatus. Comp. Biochem. Physiol 74B, 381

    Google Scholar 

  134. Kopeyan, C., Martinez, G., Lissitzky, S., Miranda, F. and Rochat, H. (1974) Disulfide bonds of toxin Ü of the scorpion Androctonus australis Hector. Eur. J. Biochem. 47, 483

    Google Scholar 

  135. Koppenhofer, E. and Schmidt, R. (1968) Die Wirkung von Skorpiongift auf die Ionenstrome des Ranvier’schen Schnurrings. I. Die Permeabilitaten von PNa+ und PK+- Pflugers Arch. 303, 133

    Google Scholar 

  136. Krnjevic, K. (1974) Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54, 418

    Google Scholar 

  137. Lafranconi, W.M., Ferlan, L, Russell, F.E. and Huxtalele, R.J. (1984) The action of equinatoxin, a peptide from the venom of the sea anemone, Actinia equina, on the isolated lung. Toxicon 22, 347

    Google Scholar 

  138. Lazarovici, P., Menashe, M. and Zlotkin, E. (1984) Toxicity to Crustacea due to polypeptide-phospholipase interaction in the venom of a chactoid scorpion. Arch. Biochem. Biophys. 229, 270

    Google Scholar 

  139. Lazarovici, P. and Zlotkin, E. (1982) A mammal toxin derived from the venom of a chactoid scorpion. Comp. Biochem. Physiol. 71C, 111

    Google Scholar 

  140. Lazarovici, P., Yanai, P., Pelhate, M. and Zlotkin, E. (1982) Insect toxic components from the venom of a chactoid scorpion Scorpio maurus palmatus (Scorp- ionidae). J. Biol. Chem. 257, 8397

    Google Scholar 

  141. Lee, C.Y. (1972) Chemistry and pharmacology of polypeptide Toxins in snake venoms. Ann. Rev. Pharmacol. 12, 265

    Google Scholar 

  142. Lee, C.Y. (1979a) Recent advances in chemistry and pharamacology of snake Toxins. In: Ceccarelli, B. and Clementi, F. (eds) Advances in cytopharmacology, Vol. 3, pp. 1–16. Raven Press, New York

    Google Scholar 

  143. Lee, C.Y. (1979b) Snake venoms. Springer, Berlin and New York Lees, G., Beadle, D. J. and Botham, R.P. (1983) Cholinergic receptors on cultured neurones from the central nervous system of embryonic cockroaches. Brain Res. 288, 49

    Google Scholar 

  144. Lester, D., Lazarovici, P., Pelhate, M. and Zlotkin, E. (1982) Two insect Toxins from the venom of the scorpion Buthotus judaicus. Purification, characterization and action. Biochim. Biophys. Acta 701, 370

    Google Scholar 

  145. Lieberman, D.L. and Blumenthal, K.M. (1986) Structure and action of heterone- mertine polypeptide Toxins. Specific cross-linking of Cerebratulus lacteus toxin B-IV to lobster axon membrane vesicles. Biochim. Biophys. Acta 855, 41

    Google Scholar 

  146. Longenecker, H.E. Jr, Hurlbut, W.P„ Mauro, A. and Clark, A.W. (1970) Effects of black widow spider venom on the frog neuromuscular junction. Effects on end plate potential, miniature end plate potential and nerve terminal spike. Nature (Lond.) 225, 701

    Google Scholar 

  147. Low, P.A., Wu, C.H. and Narahashi, T. (1979) Effect of anthopleurin A on crayfish giant axon. J. Pharmacol. Exp. Ther. 210, All

    Google Scholar 

  148. Manaranche, R., Thieffry, M. and Israel, M. (1980) Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter. J. Cell. Biol. 85, 446

    Google Scholar 

  149. Mansour, N.A., Pessah, I.N. and Eldefrawi, A.T. (1980) Binding of [125I] a-bungarotoxin and reversible cholinergic ligands to proteins in house fly brains. In: Insect neurobiology and pesticide action (Neurotox 79), pp. 201–8. Society of Chemical Industry, London

    Google Scholar 

  150. Marias, G. and Bon, C. (1982) Relationship between the pharmacological action of crotoxin and its phospholipase activity. Eur. J. Biochem. 125, 157

    Google Scholar 

  151. Maroli, M., Bettini, S. and Parrfili, B. (1973) Toxicity of Latrodectus mactans tredecimguttatus venom on frog and birds. Toxicon 11, 203

    Google Scholar 

  152. May, T.E. and Piek, T. (1979) Neuromuscular block in locust skeletal muscle caused by a venom preparation made from the digger wasp Philanthus triangulum F. from Egypt. J. Insect. Physiol. 25, 685

    Google Scholar 

  153. McClure, W.O., Abbott, B.C., Baxter, D.E., Hsiao, T.H., Satin, L.S., Siger, A. and Yosino, J.E. (1980) Leptinotarsin: a presynaptic neurotoxin that stimulates release of acetylcholine. Proc. Natl Acad. Sci. USA 77, 1219

    Google Scholar 

  154. Mcintosh, M., Cruz, L.J., Hunkapiller, M.W., Gray, W.R. and Olivera, B.M. (1982) Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch. Biochem. Biophys. 218, 329

    Google Scholar 

  155. Mcintosh, M.E. and Watt, D.D. (1972) Purification of Toxins from the North American scorpion Centruroides sculpturatus. In: de Vries, A. and Kochva, E. (eds) Toxins of animal and plant origin, Vol. 2, pp. 529–44. Gordon & Breach, London

    Google Scholar 

  156. Mebs, D., Liebrich, M., Reul, A. and Samejima, Y. (1983) Hemolysins and protein-ase inhibitors from sea anemones of the Gulf of Aqaba. Toxicon 21, 257

    Google Scholar 

  157. Mebs, D., Narita, K., Iwanaga, S., Samejima, Y. and Lee, C.Y. (1972) Purification, properties and amino acid sequence of a-bungarotoxin from the venom of Bungarus multicinctus. Hoppe-Seyler’s Z. Physiol. Chem. 353, 243

    Google Scholar 

  158. Meldolesi, J. (1982) Studies on a-latrotoxin receptors in rat brain synaptosomes. Correlation between toxin binding and stimulation of transmitter release. J. Neurochem. 38, 1559

    Google Scholar 

  159. Meldolesi, J., Madeddu, L., Gatti, G. and Watanabe, O. (1983) Studies on a-latrotoxin of black widow spider venom and its receptor in presynaptic membranes. Period. Biol. 85, 107

    Google Scholar 

  160. Michaelis, E.K., Galton, N. and Early, S. (1984) Spider venoms inhibit L-glutamate binding to brain synaptic membrane receptors. Proc. Natl Acad Sci. USA 81, 5571

    Google Scholar 

  161. Miller, J.A., Agnew, W.S. and Levinson, S.R. (1983) Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry 22, 462

    Google Scholar 

  162. Miller, Ch., Moczydlowski, E., Latorre, R. and Phillips, M. (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature (Lond.) 313, 316

    Google Scholar 

  163. Miranda, F., Kopeyan, C., Rochat, C., Rochat, H. and Lissitsky, S. (1970) Purification of animal neuroToxins. Isolation and characterization of eleven neuroToxins from the venom of the scorpions Androctonus australis Hector, Buthus occitanus tunetatus and Leiurus quinquestriatus. Eur. J. Biochem. 16, 514

    Google Scholar 

  164. Miyamoto, T., Ohizumi, O., Washio, H. and Yasumoto, T. (1984) Potent excitatory effect of maitotoxin on Ca channels in the insect skeletal muscle. Pflügers Arch. 400, 439

    Google Scholar 

  165. Morel, N., Theiffry, M. and Manaranche, R. (1983) Binding of a Glycera convoluta neurotoxin to cholinergic nerve terminal plasma membranes. J. Cell. Biol. 97, 1737

    Google Scholar 

  166. Nagai, T., Obara, S. and Kawai, N. (1984) Differential blocking effects of a spider toxin on synaptic and glutamate responses in the afferent synapse of the acoustico lateralis receptor of Plotosus. Brain Res. 300, 183

    Google Scholar 

  167. Nakamura, Y., Nakajima, S. and Grundfest, H. (1965) The action of tetrodotoxin on electrogenic components of squid giant axons. J. Gen. Physiol. 48, 985

    Google Scholar 

  168. Narahashi, T. (1974) Chemicals as tools in the study of excitable membranes. Physiol Rev. 54, 813

    Google Scholar 

  169. Narahashi, T., Anderson, N.C. and Moore, J.W. (1966) Tetrodotoxin does not block excitation from inside the nerve membrane. Science 153, 765

    Google Scholar 

  170. Narahashi, T., Haas, H.G. and Terrien, E.F. (1967) Saxitoxin and tetrodotoxin: comparison of nerve blocking mechanism. Science 157, 1441

    Google Scholar 

  171. Narahashi, T., Moore, J.W. and Scott, W.R. (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axon. J. Gen. Physiol. 47, 965

    Google Scholar 

  172. Narahashi, T., Shapiro, B.I., Deguchi, T., Scuka, M. and Wang, C.M. (1972) Effects of scorpion venom on squid axon membranes. Am. J. Physiol. 222, 850

    Google Scholar 

  173. Oblas, B., Boyd, N.D. and Singer, R.H. (1983) Analysis of receptor-ligand interactions using nitrocellulose gel transfer: application to Torpedo acetylcholine receptor and alphabungarotoxin. Anal. Biochem. 130, 1

    Google Scholar 

  174. Ohizumi, Y., Kajiwara, A. and Yasumoto, T. (1983) Excitatory effect of the most potent marine toxin, maitotoxin, on the guinea-pig vas deferens. J. Pharmacol Exp. Ther. 227, 199

    Google Scholar 

  175. Ohizumi, Y. and Yasumoto, T. (1983) Contractile response of the rabbit aorta to maitotoxin, the most potent marine toxin. J. Physiol 337, 111

    Google Scholar 

  176. Ohta, M., Narahashi, T. and Keeler, R.F. (1973) Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J. Pharmacol Exp. Ther. 184, 143

    Google Scholar 

  177. Ornberg, R.L., Smyth, T. and Benton, A.W. (1976) Isolation of neurotoxin with a presynaptic action from the venom of the black widow spider (Latrodectus mactans, Fabr.). Toxicon 14, 329

    Google Scholar 

  178. Ovchinnikov, Yu. A. and Grishin, E.V. (1982) Scorpion neuroToxins as tools for studying fast sodium channels. Trends Biochem. Sci. 7, 26

    Google Scholar 

  179. Paggi, P. and Toschi, G. (1977) Effects of denervation and lack of calcium on the action of Latrodectus venom on rat sympathetic ganglion. Life Sci. 11, 413

    Google Scholar 

  180. Pansa, M.C., Migliori Natalizi, G. and Bettini, S. (1973) Effect of scorpion venom and its fractions on the crayfish stretch receptor organ. Toxicon 11, 283

    Google Scholar 

  181. Parnas, I., Avgar, D. and Shulov, A. (1970) Physiological effects of venom of Leiurus quinquestriatus on neuromuscular systems of locust and crab. Toxicon 8, 67

    Google Scholar 

  182. Parnas, I. and Russell, F.E. (1967) Effects of venom on nerve muscle and neuro-muscular junction. In: Russell, F.E. and Saunders, P.R. (eds) Animal Toxins, pp. 401–27. Pergamon Press, Oxford and New York

    Google Scholar 

  183. Pauron, D., Barhanin, J. and Lazdunski, M. (1985) The voltage-dependent Na+ channel of insect nervous system identified by receptor sites for tetrodotoxin and scorpion and sea anemone Toxins. Biochem. Biophys. Res. Commun. 131, 1226

    Google Scholar 

  184. Pelhate, M. and Sattelle, D.B. (1982) Pharmacological properties of insect axons: a review. J. Insect Physiol 28, 889

    Google Scholar 

  185. Pelhate, M. and Zlotkin, E. (1981) Voltage dependent slowing of the turn off of Na+ current in the cockroach giant axon induced by the scorpion venom ‘insect toxin’. J. Physiol (Lond.) 319, 30

    Google Scholar 

  186. Pelhate, M. and Zlotkin, E. (1982) Actions of insect toxin and other Toxins derived from the venom of the scorpion Androctonus australis in isolated giant axons of the cockroach (Periplaneta americana). J. Exp. Biol. 97, 67

    Google Scholar 

  187. Pichon, Y. (1974) The pharmacology of the insect nervous system. In: Rockstein, M. (ed.) The physiology of Insecta, Vol. 4, pp. 101–74. Academic Press, New York

    Google Scholar 

  188. Pichon, Y. (1976) Pharmacological properties of the ionic channels in insect axons. In: Spencer Davies, P. (ed.) Periplaneta in experimental biology, Vol. 1, pp. 297–312. Pergamon Press, Oxford

    Google Scholar 

  189. Piek, T. (1982) 6-Philanthotoxin, a semi-irreversible blocker of ion channels. Comp. Biochem. Physiol. 72 C, 311

    Google Scholar 

  190. Piek, T., Buitenhuis, A., Veldsema-Currie, R.D. and Mantel, P. (1983) Smooth muscle contracting factors in the venoms of sphecid wasps (Hym: Sphecidae) Comp. Biochem. Physiol. 75C, 153

    Google Scholar 

  191. Piek, T., Dunbar, S.J., Kits, K.S., Van Marie, J. and Van Wilgenburg, H. (1985) PhilanthoToxins: a review of the diversity of actions on synaptic transmission. Pest. Sci. 16, 488

    Google Scholar 

  192. Piek, T., Hue, B., Pelhate, M., David, J.A., Spanjer, W. and Veldsema-Currie, R.D. (1984) Effects of the venom of Philanthus triangulum F. (Hym. Sphecidae) and (3- and 6-philanthotoxin on axonal excitability and synaptic transmission in the cockroach CNS. Arch. Ins. Biochem. Physiol. 1, 297

    Google Scholar 

  193. Piel, T., Mantel, P. and Engels, E. (1971) Neuromuscular block in insects caused by the venom of the digger wasp Philanthus triangulum. F.Comp. Gen. Pharmacol. 2, 317

    Google Scholar 

  194. Piek, T., Mantel, P. and Jas, H. (1980a) Ion-channel block in insect muscle fibre membrane by the venom of the digger wasp Philanthus triangulum F. J. Insect Physiol. 26, 345

    Google Scholar 

  195. Piek, T., May, T.E. and Spanjer, W. (1980b) Paralysis of locomotion in insects by the venom of the digger wasp Philanthus triangulum. In: Insect neurobiology and pesticide action (Neurotox 79), pp. 219–26. Society of Chemical Industry, London.

    Google Scholar 

  196. Piek, T. and Simon-Thomas, R.T. (1969) Paralysing venoms of solitary wasps. Comp. Biochem. Physiol. 30, 13

    Google Scholar 

  197. Piek, T. and Spanjer, W. (1986) Chemistry and pharmacology of solitary wasp venoms. In: Piek, T. (ed.) Venoms of the Hymenoptera, pp. 161–308. Academic Press, London and New York

    Google Scholar 

  198. Piek, T., Spanjer, W., Veldsema-Currie, R.D., Van Groen, T., De Hanna, W. and Mantel, P. (1982a) Effect of venom of the digger wasp Philanthus triangulum F. on the sixth abdominal ganglion of the cockroach. Comp. Biochem. Physiol. 71C, 159

    Google Scholar 

  199. Piek, T., Veenendaal, R.L. and Mantel, P. (1982b) The pharmacology of Microbracon venom. Comp. Biochem. Physiol. 72C, 303

    Google Scholar 

  200. Possani, L.D., Dent, M.A.R., Martin, B.M., Maelicke, A. and Svendsen, I. (1981) The amino terminal sequence of several Toxins from the venom of the Mexican scorpion Centruroides noxius Hoffman. Carlsberg Res. Commun. 46, 207

    Google Scholar 

  201. Quicke, D.L.J. (1985) Antagonism of locust muscle glutamate receptor-channel complexes by fractions of orb-web spider venoms. Neurotox 85, University of Bath, England, Abstracts

    Google Scholar 

  202. Raftery, M.A., Hunkapiller, M.W., Strader, C.D. and Hood, L.E. (1980) Acetylcholine receptor: complex of homologous subunits. Science 208, 1454

    Google Scholar 

  203. Rathmayer, W. (1962a) Paralysis caused by the digger wasp Philanthus. Nature (Lond.) 196, 1148

    Google Scholar 

  204. Rathmayer, W. (1962b) Das Paralysierungsproblem beim Bienenwolf Philanthus triangulum F. (Hym. Sphee). Z. Vergl. Physiol. 45, 413

    Google Scholar 

  205. Rathmayer, W. (1966) The effect of the poison of spider and digger wasps on the prey. Mem. Inst. Butantan Simp. Inst. 33, 651

    Google Scholar 

  206. Rathmayer, W. (1978) Venoms of Sphecidae, Pompilidae, Multilidae and Bethylidae. In: Bettini, S. (ed.) Arthropod venoms, pp. 661–90. Springer, Berlin and New York

    Google Scholar 

  207. Rathmayer, W., Ruhland, ML, Tintpulver, M., Walther, Ch. and Zlotkin, E. (1978) The effect of Toxins derived from the venom of the scorpion Androctonus austrails Hector on neuromuscular transmission. In: Rosenberg, P. (ed.) Toxins: animal, plant and microbial, pp. 629–37. Pergamon Press, Oxford and New York

    Google Scholar 

  208. Rathmayer, W. and Walther, C. (1976) Mode of action and specificity of Habrobracon venom. In: Ohsaka, A., Hayashi, K. and Sawai, Y. (eds) Animal, plant and microbial Toxins, Vol. 2, pp. 299–307. Plenum Press, New York

    Google Scholar 

  209. Rathmayer, W., Walther, Ch. and Zlotkin, E. (1977) The effect of different Toxins from scorpion venom on neuromuscular transmission and nerve action potentials in the crayfish. Comp. Biochem. Physiol 56C, 35

    Google Scholar 

  210. Ray, R., Morrow, C.S. and Catterall, W.A. (1978) Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles. J. Biol. Chem. 253, 7307

    Google Scholar 

  211. Ritchie, J.M., Rogart, R.B. and Strichartz, G.R. (1976) A new method for labelling saxitoxin and its binding to nonmyelinated fibers of the rabbit vagus, lobster walking leg and garfish olfactory nerves. J. Physiol. (Lond.) 261, All

    Google Scholar 

  212. Rochat, H., Bernard, P. and Couraud, F. (1979) Scorpion Toxins: chemistry and mode of action. In: Ceccarelli, B. and Clementi, F. (eds) Advances in cytopharmacology, Vol. 3, pp. 325–34. Raven Press, New York

    Google Scholar 

  213. Rochat, H., Rochat, C., Kopeyan, C., Miranda, F., Lissitzky, S. and Edman, P. (1970) Scorpion neuroToxins — a family of homologous proteins. FEBS Lett. 10, 349

    Google Scholar 

  214. Rochat, C., Rochat, H., Miranda, F. and Lissitzky, S. (1967) Purification and some properties of the neurotoxins of Androctonus australis Hector. Biochemistry 6, 578

    Google Scholar 

  215. Romey, G., Abita, J.P., Schweitz, H., Wunderer, G. and Lazdunski, M. (1976) Sea anemone toxin: a tool to study molecular mechanism of nerve conduction and excitation-contraction coupling. Proc. Natl Acad. Sci. USA 73, 4055

    Google Scholar 

  216. Romey, G., Chicheportiche, R., Lazdunski, M., Rochat, H., Miranda, F. and Lissitzky, S. (1975) Scorpion neurotoxin — a presynaptic toxin which affects both Na+ and K+ channels in axons. Biochem. Biophys. Res. Commun. 64, 115

    Google Scholar 

  217. Romey, G., Renaud, J.F., Fosset, M. and Lazdunski, M. (1980) Pharmacological properties of the interaction of the sea anemone polypeptide toxin with cardiac cells in culture. J. Pharmacol. Exp. Ther. 213, 607

    Google Scholar 

  218. Rosenberg, P. (ed.) (1978) Toxins: animal, plant and microbial. Pergamon Press, Oxford and New York

    Google Scholar 

  219. Rosin, R. and Shulov, A. (1963) Studies on the scorpion Nebo hierochonticus. Proc. Zool. Soc. Lond. 140, 547

    Google Scholar 

  220. Ruhland, M., Zlotkin, E. and Rathmayer, W. (1977) The effect of Toxins from the venom of the scorpion Androctonus australis on a spider nerve-muscle preparation. Toxicon 15, 157

    Google Scholar 

  221. Saenger, W., Walkinshaw, M.D. and Maelicke, A. (1983) a-Cobratoxin and a- bungarotoxin, two members of the ‘long’ neurotoxin family — a structural comparison. In: Hucho, F. and Ovchinnikov, Yu. A. (eds) Toxins as tools in neurochemistry, pp. 151–7. De Gruyter, Berlin and New York

    Google Scholar 

  222. Salikhov, S.I., Tashmukhamedov, M.S., Adylbekov, M.T., Abdurakhmanova, Ya., Korneev, A.S. and Sadykov, A.S. (1982a) Isolation and structural studies of neurotoxin from the venom of spider Latrodectus tredecimguttatus. Chem. Pept. Proteins Proc. USSR-FRG Symp. 3rd. 1980, 109

    Google Scholar 

  223. Salikhov, S.I., Tashmukhamedov, M.S., Adylbekov, M.T., Korneev, A.S. and Sadykov, A.S. (1982b) Isolation and quaternary structure of neurotoxin from Latrodectus tredecimguttatus spider venom. Dokl. Acad. Nauk SSR 262, 485

    Google Scholar 

  224. Satteile, D.B. (1985) Acetylcholine receptors. In: Kerkut, G.A. and Gilbert, L.I. (eds) Comprehensive insect physiology Biochemistry and pharmacology, Vol. Ü, pp. 395–434. Pergamon Press, Oxford and New York

    Google Scholar 

  225. Schmidt, H. and Schmitt, O. (1974) Effect of aconitine on the sodium permeability of the node of Ranvier. Pflugers Arch. 349, 133

    Google Scholar 

  226. Schmitt, O. and Schmidt, H. (1972) Influence of calcium ions on the ionic currents of nodes of Ranvier treated with scorpion venom. Pflugers Arch. 333, 51

    Google Scholar 

  227. Schweitz, H., Bidard, J.N., Frelin, Ch., Pauron, D., Vijverberg, H.P.M., Mahasneh, D.M. and Lazdunski, M. (1985) Purification, sequence and pharmacological properties of sea anemone Toxins from Radianthus paumotensis. A new class of sea anemone Toxins acting on the sodium channel. Biochemistry 24, 3554

    Google Scholar 

  228. Schweitz, H., Vincent, J.P., Barhanin, J., Frelin, Gh., Linden, G., Hugues, M. and Lazdunski M. (1981) Purification and pharmacological properties of eight sea anemone toxins from Anemonia sulcata, Anthopleura xanthogrammica, Stoichactis giganteus and Actinodendron plumosum. Biochemistry 20, 5245

    Google Scholar 

  229. Sharkey, R.G., Beneski, D.A. and Catterall, W.A. (1984) Differential labeling of the a- and pj subunits of the sodium channel by photoreactive derivatives of scorpion toxin. Biochemistry 23, 78

    Google Scholar 

  230. Spanjer, W., Grosu, L. and Piek, T. (1977) Two different paralysing preparations obtained from a homogenate of the wasp Microbracon hebetor (Say). Toxicon 15, 413

    Google Scholar 

  231. Spanjer, W., May, T.E., Piek, T. and De Hann, W. (1982) Partial purification of components from the paralyzing venom of the digger wasp Philanthus triangulum F. (Hym. Sphec.) and their action on neuromuscular transmission in the locust. Comp. Biochem. Physiol. 71C, 149

    Google Scholar 

  232. Stahnke, H.L. (1966) Some aspects of scorpions behavior. Bull. South Calif. Acad. Sci. 65, 65

    Google Scholar 

  233. Steiner, A.L. (1962) Etude du comportement predateur d’un hymenoptere sphegien: Liris nigra V.D.L. (= Notogonia pompiliformis Pz). Ann. Sci. Nat. Zool (Ser. 12 ) 41

    Google Scholar 

  234. Steiner, A.L. (1986) Stinging behavior of solitary wasps. In: Piek, T. (ed.) Venoms of the Hymenoptera, pp. 63–160. Academic Press, London and New York

    Google Scholar 

  235. Strichartz, G.R. and Hansen-Bay, C.M. (1981) Saxitoxin binding in nerves from walking legs of lobster Homarus americanus. Two classes of receptors. J. Gen. Physiol. 77, 205

    Google Scholar 

  236. Strichartz, G.R., Rogart, R.B. and Ritchic, J.M. (1979) The binding of radioactively labelled saxitoxin to the squid giant axon. J. Memb. Biol. 48, 357

    Google Scholar 

  237. Takahashi, M., Ohizumi, Y. and Yasumoto, T. (1982) Maitotoxin: a Ca2+ channel activator candidate. J. Biol. Chem. 257, 7287

    Google Scholar 

  238. Takahashi, M., Tatsumi, M., Ohizumi, Y. and Yasumoto, T. (1983) Ca2+ channel activating function of maitotoxin, the most potent marine toxin known, in clonal rat pheochromocytoma cells. J. Biol. Chem. 258, 10944

    Google Scholar 

  239. Tamashiro, M. (1971) A biological study of venoms of two spccics of Br aeon. Tech. Bull. Hawaü Agric. Exp. Stn 70

    Google Scholar 

  240. Tanaka, J.C., Eccleston, J.F. and Barchi, R.L. (1983) Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma. J. Biol. Chem. 258, 7519

    Google Scholar 

  241. Teitelbaum, Z., Lazarovici, P. and Zlotkin, E. (1979) Selective binding of the scorpion venom insect toxin to insect nervous tissue. Insect Biochem. 9, 343

    Google Scholar 

  242. Tintpulver, M., Zerachia, T. and Zlotkin, E. (1976) The action of toxins derived from scorpion venom on the ileal smooth muscle preparation. Toxicon 14, 311

    Google Scholar 

  243. Toth, G.P. and Blumenthal, K.M. (1983) Structure and action of heteronemertine polypeptide toxins. Binding of Cerebratulus lacteus toxin B-IV to axon membrane vesicles. Biochim. Biophys. Acta 732, 160

    Google Scholar 

  244. Tu, A.T. (1974) Sea snake venom and neurotoxins. J. Agric. Food Chem. 22, 36

    Google Scholar 

  245. Tu, A.T. (1977) Venoms: chemistry and molecular biology. John Wiley, New York Tzeng, M.C., Cohen, R.S. and Siekevitz, P. (1978) Release of neurotransmitters and depletion of synaptic vesicles in cerebral cortex slices by a-latrotoxin from black widow spider venom. Proc. Natl Acad. Sci. USA 75 4016

    Google Scholar 

  246. Ulbricht, W. (1969) The effect of veratridine on excitable membranes of nerve and muscle. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 61, 18

    Google Scholar 

  247. Usherwood, P.N.R., Machili, P. and Leaf, G. (1968) L-Glutamate at insect excitatory nerve muscle synapses. Nature (Lond.) 219, 1169 Usherwood, P.N.R. ( 1982 ) Review of symposium. In: Ciba Foundation Symposium

    Google Scholar 

  248. Neuropharmacology of insects, pp. 307–17. Pitman, London Usmanov, P.B., Kalikulov, D., Shadyeva, N.G., Nenilin, A.B. and Tashmukhamedov, B.A. (1985) Postsynaptic blocking of glutaminergic and cholinergic synapses as a common property of Araneidae spider venoms. Toxicon 23, 528

    Google Scholar 

  249. Vachon, M. (1952) Etudes sur les scorpiones. Institute Pasteur de Algerie Vachon, M. (1953) The biology of scorpions. Endeavour 12, 80

    Google Scholar 

  250. Van Marie, J., Piek, T., Lind, A. and Van Weeren-Kramer, J. (1985) Specificity of two insect Toxins as inhibitors of high affinity transmitter uptake. Comp. Biochem. Physiol. 28C, 435

    Google Scholar 

  251. Van Marie, J., Piek, T., Lind, A. and Van Weeren-Kramer, J. (1986) Reduction of high affinity glutamate uptake in rat hippocampus by two polyamine-like Toxins isolated from the venom of the predatory wasp Philanthus triangulum F. Experientia 42, 157

    Google Scholar 

  252. Van Rietschoten, J., Granier, C., Rochat, H., Lissitzky, S. and Miranda, F. (1975) Synthesis of apamin, a neurotoxic peptide from bee venom. Eur. J. Biochem. 56, 35

    Google Scholar 

  253. Van Wilgenburg, H., Piek, T. and Mantel, P. (1984) Ion channel block in rat diaphragm by the venom of the digger wasp Philanthus triangulum. Comp. Biochem. Physiol. 79C, 205

    Google Scholar 

  254. Visser, B.J., Labruyere, W.T., Spanjer, W. and Piek, T. (1983) Characterization of two paralysing protein Toxins (A-MTX and B-MTX), isolated from a homogenate of the wasp Microbracon hebetor (Say). Comp. Biochem. Physiol. 75B, 523

    Google Scholar 

  255. Walther, C. and Rathmayer, W. (1974) The effect of Habrobracon venom on excitatory neuromuscular transmission in insects. J. Comp. Physiol 89, 23

    Google Scholar 

  256. Walther, C. and Reinecke, M. (1983) Block of synaptic vesicle exocytosis without block of Ca2+ influx. An ultrastructural analysis of the paralyzing action of Habrobracon venom on locust motor nerve terminals. Neuro Science 9, 213

    Google Scholar 

  257. Walther, C., Zlotkin, E. and Rathmayer, W. (1976) Action of different toxins from the scorpion Androctonus australis on a locust nerve-muscle preparation. J. Insect Physiol. 22, 1187

    Google Scholar 

  258. Watt, D.D., Simard, J.M., Babin, D.R. and Mlejnek, R.V. (1978) Physiological characterization of Toxins isolated from scorpion venom. In: Rosenberg, P. (ed.) toxins: animal plant and microbial, pp. 647–60. Pergamon Press, Oxford

    Google Scholar 

  259. Weiland, G.A. and Molinoff, P.B. (1981) Quantitative analysis of drug-receptor interactions. I. Determination of kinetic and equilibrium properties. Life Sci. 29, 313

    Google Scholar 

  260. Wernike, J.F., Vanker, A.D. and Howard, B.D. (1975) The mechanism of action of p-bungarotoxin. J. Neurochem. 25, 483

    Google Scholar 

  261. Witkop, B. and Brossi, A. (1984) Natural Toxins and drug development. In: Krogs- gaard-Larsen, P., Christensen, S.B. and Kofod, H. (eds) Natural products and drug development, pp. 283–300. Munksgaard, Copenhagen

    Google Scholar 

  262. Wunderer, G. and Eulitz, M. (1978) Amino acid sequence of toxin I from Anemonia sulcata. Eur. J. Biochem. 89, 11

    Google Scholar 

  263. Wunderer, G., Fritz, H., Wachter, E. and Machleidt, W. (1976) Amino acid sequence of a coelenterate toxin: Toxin Ü from Anemonia sulcata. Eur. J. Biochem. 68, 193

    Google Scholar 

  264. Yasumoto, T., Nakajima, I., Oshima, Y. and Bagnis, R. (1979) A new toxic dinofla- gellate found in association with ciguatera. In: Taylor, D.L. and Seligen, H. (eds) Toxic dinoflagellate blooms, pp. 65–70 Elsevier, North Holland, New York

    Google Scholar 

  265. Zhdanova, L.N., Adamovich, T.B., Nazimov, I.V., Grishin, E.V. and Ovchinnikov, Yu. A. (1977) Amino acid sequence of insectotoxin I, from the venom of the central Asian scorpion Buthus epeus. Biorg. Kim. (USSR) 3, 485

    Google Scholar 

  266. Zlotkin, E. (1973) Chemistry of animal venoms. Experientia 29, 1453 Zlotkin, E. (1985) Toxins derived from arthropod venoms specifically affecting insects. In: Kerkut, G.A. and Gilbert, L.I. (eds) Comprehensive insect physiology, Biochemistry and pharmacology, Vol. 10, pp. 499–546. Pergamon Press, Oxford

    Google Scholar 

  267. Zlotkin, E., Fraenkel, G., Miranda, F. and Lissitzky, S. (1971a) The effect of scorpion venom on blowfly larvae; a new method for the evaluation of scorpion venom potency. Toxicon 9, 1

    Google Scholar 

  268. Zlotkin, E. and Gordon, D. (1985) Detection, purification and receptor binding assays of insect selective neurotoxins derived from scorpion venom. In: Breer, H. and Miller, T.A. (eds) Neurochemical techniques in insect research, pp. 243–95. Springer, Berlin and New York

    Google Scholar 

  269. Zlotkin, E., Kadouri, D., Gordon, D., Pelhate, M., Martin, M.F. and Rochat, H. (1985) An excitatory and a depressant insect toxin from scorpion venom — both affect sodium conductance and possess a common binding site. Arch. Biochem. Biophys. 240, 877

    Google Scholar 

  270. Zlotkin, E., Lebovits, N. and Shulov, A. (1972c) Toxic effects of the venom of the scorpion Scorpio maurus palmatus (Seorpionidae). Riv. Parassit. 33, 237

    Google Scholar 

  271. Zlotkin, E., Lebovits, N. and Shulov, A. (1973) Hemolytic action of the venom of the scorpion Scorpio maurus palmatus (Seorpionidae). In: Kaiser, E. (ed.) Animal and plant toxins, pp. 67–72.

    Google Scholar 

  272. Goldman, Munich Zlotkin, E., Martinez, G., Rochat, H. and Miranda, F. (1975) A protein toxic to Crustacea from the venom of the scorpion Androctonus australis. Insect Biochem 5, 243

    Google Scholar 

  273. Zlotkin, E., Miranda, F., Kupeyan, G. and Lissitzky, S. (1971b) A new toxic protein in the venom of the scorpion Androctonus australis Hector. Toxicon 9, 9

    Google Scholar 

  274. Zlotkin, E., Miranda, F. and Lissitzky, S. (1972a) A factor toxic to crustaceans in the venom of the scorpion Androctonus australis Hector. Toxicon 10, 211

    Google Scholar 

  275. Zlotkin, E., Miranda, F. and Lissitzky, S. (1972b) Proteins in scorpion venoms toxic to mammals and insects. Toxicon 10, 207

    Google Scholar 

  276. Zlotkin, E., Miranda, F. and Rochat, H. (1978) Chemistry and pharmacology of Buthinae scorpion venoms. In: Bettini, S. (ed.) Arthropod venoms, pp. 317–69. Springer, Berlin and New York

    Google Scholar 

  277. Zlotkin, E., Rochat, H., Kupeyan, C., Miranda, F. and Lissitzky, S. (1971c) Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochimie (Paris) 55, 1073

    Google Scholar 

  278. Zlotkin, E., Teitelbaum, Z., Rochat, H. and Miranda, F. (1979) The insect toxin from the venom of the scorpion Androctonus mauretanicus. Purification, characterization and specificity. Insect Biochem. 9, 347

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Dr Shlomo Zlotkin on his 85 th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1988 G.G. Lunt and R.W. Olsen

About this chapter

Cite this chapter

Zlotkin, E. (1988). Neurotoxins. In: Lunt, G.G., Olsen, R.W. (eds) Comparative Invertebrate Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9804-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9804-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9806-0

  • Online ISBN: 978-1-4615-9804-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics