Advertisement

Invertebrate Neuropeptides

Chapter

Abstract

Peptides are now recognised as by far the largest and most structurally diverse class of neuroculatory substances (Snyder, 1980; Iversen, 1983; Krieger, 1983). This is true not only for vertebrates (Krieger, 1983, listed 38 known brain peptides) but also for invertebrates (see Table 5.1). The realisation that peptides play an important role within the brain has come only recently, being largely a result of improved techniques for physically handling and chemically manipulating the tiny quantities of peptides characteristically present in nervous tissue. Of course, peptides have been studied for much longer than this in their role as neurohormones. Indeed it is true to say that we still know most about those neuropeptides (vasopressin is a vertebrate example) that have neurohormonal functions, many (if not all) of which also have modulatory or transmitter roles within the brain. However, it is now clear that neuropeptides also exist (e. g. substance P) that have no known function as circulating regulatory agents.

Keywords

High Performance Liquid Chromatography Abdominal Ganglion Atrial Gland Corpus Cardiaca Adipokinetic Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, T.W., Castellucci, V.F., Camardo, J.S., Kandel, E.R. and Lloyd, P.E. (1984) Two endogenous Neuropeptides modulate the gill and siphon withdrawal reflex in Aplysia by presynaptic facilitation involving cAMP-dependent closure of a serotonin-sensitive potassium channel. Proc. Natl Acad. Sci. USA 81, 7956- 60Google Scholar
  2. Adams, M.E. and O’Shea, M. (1983) Peptide cotransmitter at a neuromuscular junction. Science, Wash. 221, 286–9Google Scholar
  3. Adams, M.E. and Phelps, M.N. (1983) Colocalization of bursicon bioactivity with proctolin in identified neurons. Soc. Neurosci. Abstr 9, 313Google Scholar
  4. Agui, N., Granger, N.A., Gilbert, L.I. and Bollenbacher, W.E. (1979) Cellular localization of the insect prothoracicotropic hormone: in vitro assay of a single neurosecretory cell. Proc. Natl Acad. Sci. USA 76, 5694–8Google Scholar
  5. Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S. and Evans, R.H. (1982) Alternative RNA processing in calcitonin gene expression generates MRMAS encoding different polypeptide products. Nature (Lond.) 298, 240–4Google Scholar
  6. Barnard, C.S. and Dockray, G.J. (1984) Increases in arterial blood pressure in the rat in response to a new vertebrate neuropeptide, LPLRFAMIDE, and a related molluscan peptide, FMRFAMIDE. Reg. Peptides 8, 209–15Google Scholar
  7. Bennett, G.W., Brazell, M.P. and Marsden, C.A. (1981) Electrochemistry of Neuropeptides: a possible method for assay and in vivo detection. Life Sci. 29, 1001–7Google Scholar
  8. Berridge, M.J., Buchan, P.B. and Heslop, J.P. (1984) Relationship of polyphosphoinositide metabolism to the hormonal activation of the insect salivary gland by 5-hydroxytryptamine. Molec. Cell. Endocrinol 36, 37–42Google Scholar
  9. Berridge, M.J. and Irvine, R.F. (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312, 315–21Google Scholar
  10. Bishop, C.A. and O’Shea, M. (1982) Neuropeptide proctolin (H-Arg-Tyr-Leu-Thr- OH): immunocytochemical mapping of neurons in the central nervous system of the cockroach. J. Comp. Neurol 207, 223–38Google Scholar
  11. Bishop, C.A., O’Shea, M. and Miller, R.J. (1981) Neuropeptide proctolin (H-Arg- Tyr-Leu-Pro-Thr-OH): immunological detection and neuronal localization in the insect central nervous system. Proc. Natl Acad. Sci. USA 78, 5899–6002Google Scholar
  12. Bishop, C.A., Wine, J.J. and O’Shea, M. (1984) Neuropeptide proctolin in postural motorneurons of the crayfish. J. Neurosci 4, 2001–9Google Scholar
  13. Blobel, G. (1980) Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500Google Scholar
  14. Bodenmuller, H. and Schaller, H.C. (1981) Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature (Lond.) 293, 579–80Google Scholar
  15. Bollenbacher, W.E., Katahira, E.J., O’Brien, M., Gilbert, L.I., Thomas, M.K., Agui, N. and Baumhover, A.H. (1984) Insect prothoracicotropic hormone: evidence for two molecular forms. Science, Wash. 224, 1243–5Google Scholar
  16. Brain, S.D., Williams, T.J., Tippins, J.R., Morriss, H.R. and Mclntyre, I. (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature (Lond.) 313, 54–6Google Scholar
  17. Brownell, P. and Mayeri, E. (1979) Prolonged inhibition of neurons by neuroendocrine cells in Aplysia. Science, Wash. 204, 417–20Google Scholar
  18. Campbell, A.K. (1983) Intracellular calcium: its universal role as regulator. Wiley, ChichesterGoogle Scholar
  19. Chan-Palay, V., Jonsson, G. and Palay, S.L. (1978) Serotonin and substance P coexist in neurons of the rat’s central nervous system. Proc. Natl Acad. Sci. USA 75, 1582–6Google Scholar
  20. Chiu, A.Y., Hunkapiller, M.W., Heller, E., Stuart, D.K., Hood, L.E. and Strumwasser, F. (1979) Neuropeptide egg-laying hormone of Aplysia: purification and primary structure. Proc. Natl Acad. Sci. USA 76, 6656–60Google Scholar
  21. Coletti-Previero, M-A., Mattras, H., Zwilling, R. and Previero, A. (1985) Enkephalin-degrading activity in arthropod hemolymph. Neuropeptides 6, 405–15Google Scholar
  22. Copenhaver, P.F. and Truman, J.W. (1986) Identification of the cerebral neuro-secretory cells that contain eclosion hormone in the moth Manduca sexta. J. Neurosci 6, 1738–47Google Scholar
  23. Cottrell, G.A. (1982) FMRFAMIDE Neuropeptides simultaneously increase and decrease potassium currents in an identified neuron. Nature (Lond.) 296, 87–9Google Scholar
  24. Cottrell, G.A., Davies, N.W. and Green, K.A. (1984) Multiple actions of a mollus-can cardio-excitatory neuropeptide and related peptides on identified Helix neurons. J. Physiol. (Lond.) 356, 315–34Google Scholar
  25. Dockray, G.J., Reeve, J.R., Shively, J., Gayson, R.J. and Barnard, C.S. (1983) A novel active pentapeptide from chicken brain identified by antibodies to FMRF- amide. Nature (Lond.) 305, 328–30Google Scholar
  26. Dockray, G.J. and Williams, R.G. (1983) Phenylalanylmethionylarginylpheny- lalaninamide-like immunoreactivity in rat brain: development of a radioimmunoassay and its application in studies of distribution and chromatographic properties. Brain Res. 266, 295–303Google Scholar
  27. Douglass, J., Civelli, O. and Herbert, E. (1984) Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Ann. Rev. Biochem. 53, 665–750Google Scholar
  28. Dua, A.K., Pinsky, C. and LaBella, F.S. (1985) Peptidases that terminate the action of enkephalins. Consideration of physiological importance for amino-, carboxy-, and pseudoenkephalinase. Life Sci. 37, 985–92Google Scholar
  29. Dunbar, S.J. and Huddart, H. (1982) Calcium movements in insect visceral muscle. Comp. Biochem. Physiol. 71 A, 425–37Google Scholar
  30. Duve, H., Thorpe, A. and Lazarus, N.R. (1979) Isolation of material displaying insulin-like immunological and biological activity from the brain of the blowfly, Calliphora vomitoria. Biochem. J 184, 221–7Google Scholar
  31. Ebberink, R.H.M., van Loenhout, H., Geraerts, W.P.M. and Joosse, J. (1985) Purification and amino acid sequence of the ovulation hormone of Lymnaea stagnalis. Proc. Natl Acad. Sci. USA 82, 7767–71Google Scholar
  32. Eekart, K., Schwartz, H., Chorev, M. and Gilon, C. (1986) Sequence determination of N-terminal and C-terminal blocked peptides containing N-alkylated amino acids and structure determination of these amino acid constituents by using fast- atom bombardment/tandem mass spectrometry. Eur. J. Biochem 157, 209–16Google Scholar
  33. Eckert, M., Agricola, H. and Penzlin, H. (1981) Immunocytochemical identification of proctolin-like immunoreactivity in the terminal ganglion and hindgut of the cockroach Periplaneta americana (L). Cell Tiss. Res 217, 633–45Google Scholar
  34. El-Salhy, M., Falkmer, S., Kramer, K.J. and Spiers, R.D. (1983) Immunohisto- chemical investigations of Neuropeptides in the brain, corpora cardiaca and corpora allata of an adult lepidopteran insect, Manduca sexta (L). Cell Tiss. Res 232, 295–317Google Scholar
  35. Fernlund, P. (1976) Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochim. Biophys. Acta 439, 17–25Google Scholar
  36. Fernlund, P. and Josefsson, L. (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science, Wash. 177, 173–5Google Scholar
  37. Ford, R., Jackson, D.M., Tetrault, L., Torres, J.C., Assanah, P., Harper, J., Leung, M.K. and Stefano, G.B. (1986) A behavioural role for enkephalins in regulating locomotor activity in the insect Leucophaea maderae: evidence for high affinity kappa-like opioid binding sites. Comp. Biochem. Physiol 55C, 61–6Google Scholar
  38. Fox, A.M. and Reynolds, S.E. (1986) Enzymatic degradation of an insect neuropeptide by haemolymph. Bull. Soc. Zool. France III, 36Google Scholar
  39. Gade, G. (1986) Relative hypertrehalosaemic activities of naturally occurring Neuropeptides from the AKH/RPCH family. Z. Naturforsch 41C, 315–20Google Scholar
  40. Gade, G., Goldsworthy, G., Schaffer, M.H., Cook, J.C. and Rinehart, K.L. (1986) Sequence analysis of adipokinetic hormones II from corpora cardiaca of Schistocerca nitens, Schistocerca gregaria, and Locusta migratoria by fast atom bombardment mass spectrometry. Biochem. Biophys. Res. Commun. 134, 723- 30Google Scholar
  41. Goldsworthy, G.J., Mallison, K., Wheeler, C.H. and Gade, G. (1986) Relative adipokinetic activities of members of the adipokinetic hormone/red pigment concentrating hormone family. J. Insect. Physiol 32, 433–8Google Scholar
  42. Greenberg, M.J., Painter, S.D., Doble, K.E., Nagle, G.T., Price, D.A. and Lehman, H.K. (1983) The molluscan neurosecretory peptide FMRF amide: comparative pharmacology and relationships to enkephalins. Fed. Proc, 42, 82–6Google Scholar
  43. Greenberg, H.J. and Price, D.A. (1983) Invertebrate Neuropeptides: native and naturalized. Ann. Rev. Physiol 45, 271–88Google Scholar
  44. Gros, E., Lafon-Cazal, M. and Dray, F. (1978) Presence de substances immuno- réactivement apparentées aux encephalines chez un insecte, Locusta migratoria. C. R. Acad. ScL Paris 287, 647–50Google Scholar
  45. Gubler, U., Seeburg, P., Hoffman, B.J., Gage, L.P. and Udenfriend, S. (1982) Molecular cloning establishes pro-enkephalin as precursor of enkephalin- containing peptides. Nature (Lond.) 295, 206–8Google Scholar
  46. Gupta, A.P. (ed). (1983) Neurohormonal organs of arthropods. C. Thomas, Springfield, 111.Google Scholar
  47. Haaijman, J.J., Deen, C., Krose, C.J.M., Zijlstra, J.J., Coolen, J. and Radl, J. (1984) Monoclonal antibodies in immunocytology; a jungle of pitfalls. Immunology Today 5, 56–8Google Scholar
  48. Haynes, L.W. (1980) Peptide neuroregulators in invertebrates. Progr. Neurobiol. 15, 205–45Google Scholar
  49. Heller, E., Kaczmarek, L.K., Hunkapiller, M.W., Hood, L.E. and Strumwasser, F. (1980) Purification and primary structure of two neuroactive peptides that cause bag cell after discharge and egg-laying in Aplysia. Proc. Natl Acad. Sci. USA 77, 2328–32Google Scholar
  50. Higgins, W.J., Price, D.A. and Greenberg, M.J. (1978) FMRF amide increases the adenylate cyclase activity and cyclic AMP level of molluscan heart. Eur. J. Pharmacol 48, 425–30Google Scholar
  51. Hokfelt, T., Johansson, O. and Goldstein, M. (1984) Chemical anatomy of the brain. Science, Wash. 225, 1326–34Google Scholar
  52. Holman, G.M., Cook, B.J. and Nachman, R.J. (1986a) Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach Leucophaea maderae. Comp. Biochem. Physiol 85C, 219–24Google Scholar
  53. Holman, G.M., Cook, B.J. and Nachman, R.J. (1986b) Isolation, primary structure and synthesis of two Neuropeptides from Leucophaea maderae: members of a new family of cephalomyotropins. Comp. Biochem. Physiol, 84C, 205–11Google Scholar
  54. Holman, G.M., Cook, B.J. and Nachman, R.J. (1986c) Primary structure and synthesis of two additional Neuropeptides from Leucophaea maderae: members of a new family of cephalomyotropins. Comp. Biochem. Physiol 84C, 271–6Google Scholar
  55. Holman, G.M., Cook, B.J. and Nachman, R.J. (1986d) Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp. Biochem. Physiol 850, 329–33Google Scholar
  56. Hunkapiller, M., Kent, S., Caruthers, M., Dreyer, W., Firca, J., Giffin, C., Horvath, S., Hunkapiller, T. and Hood, L. (1984) A microchemical facility for the analysis and synthesis of genes and proteins. Nature (Lond.) 310, 105–11Google Scholar
  57. Ishizaki, H. and Suzuki, A. (1984) The prothoracicotropic hormone of Bombyx mori. In: Hoffmann, J. and Parchet, M. (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones, pp. 63–77. Springer-Verlag, BerlinGoogle Scholar
  58. Iversen, L.L. (1983) Neuropeptides — what next? Trends Neurosci. 6, 293–94Google Scholar
  59. Jaffe, H., Raina, A.K., Riley, C.T., Fraser, B.A., Holman, G.M., Wagner, R.M., Ridgeway, R.L. and Hayes, D.K. (1986) Isolation and primary structure of a peptide from the corpora cardiaca of Heliothis zea with adipokinetic activity. Biochem. Biophys. Res. Commun 135, 622–8Google Scholar
  60. Jaros, P.P. and Keller, R. (1979) Radioimmunoassay of an invertebrate peptide hormone — the crustacean hyperglycaemic hormone. Experientia 35, 1252–3Google Scholar
  61. Jennings, K.R., Steele, R.W. and Starratt, A.N. (1983) Cyclic AMP actions on proctolin- and neurally-induced contractions of the cockroach hindgut. Comp. Biochem. Physiol 74C, 69–74Google Scholar
  62. Joosse, J. (1984) Recent progress in the endocrinology of molluscs. In: Hoffmann, J. and Parchet, M. (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones, pp. 19–35. Springer-Verlag, BerlinGoogle Scholar
  63. Joosse, J. and Geraerts, W.P.M. (1983) In: Salenddin, A.S.M. and Wilbur, K.M. (eds) The Mollusca, Vol IV. Physiology, Part I, pp. 317–406. Academic Press, London.Google Scholar
  64. Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S. and Numa, S. (1982) Cloning and sequence analysis of cDNA for porcine 3-neo-endorphin/dynorphin precursor. Nature (Lond.) 298, 245–9Google Scholar
  65. Kaldany, R.J., Namton, J.R. and Scheller, R.H. (1985) Neuropeptides in identified Aplysia neurons. Ann. Rev. Neurosci 8, 431–55Google Scholar
  66. Kandel, E.R. (1976) Cellular basis of behaviour. An introduction to behavioural neurobiology. W.H. Freeman, San FranciscoGoogle Scholar
  67. Kaupp, U.B. and Koch, K.W. (1986) Mechanism of photoreception in vertebrate vision. Trends Biochem. Sci 11, 43–7Google Scholar
  68. Keller, R. (1983) Biochemistry and specificity of the neurohaemal hormones in crustacea. In: Gupta, A.P. (ed.) Neurohaemal organs of arthropods, pp. 118–48. C. Thomas, Springfield, 111.Google Scholar
  69. Kenny, J. (1986) Cell surface peptidases are neither peptide- nor organ-specific. Trends Biochem. Sci 11, 40–2Google Scholar
  70. Keshishian, H. and O’Shea, M. (1985) The distribution of a peptide neurotransmitter in the postembryonic grasshopper central nervous system. J. Neurosci 5, 992–1004Google Scholar
  71. Kiehling, C, Martin, R., Geis, R., Bickel, U. and Voigt, K.H. (1984) Cardioexcitatory and opioid activity in extracts from nerve-tissue of Octopus vulgaris. Gen. Comp. Endocrinol 53, 467–8Google Scholar
  72. Kingan, T.G. and Titmus, M. (1983) Radioimmunologic detection of proctolin in arthropods. Comp. Biochem. Physiol. C 74, 75–8Google Scholar
  73. Kirschbaum, J.B. (1985) Potential implication of genetic engineering and other biotechnologies to insect control. Ann. Rev. Entomol 30, 51–70Google Scholar
  74. Kramer, K.J., Childs, C.N., Spiers, R.D. and Jacobs, R.M. (1982) Purification of insulin-like peptides from insect haemolymph and royal jelly. Insect Biochem. 12, 91–8Google Scholar
  75. Kream, R.M., Zukin, R.S. and Stefano, G.B. (1980) Demonstration of two classes of opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis. Positive homotrophic cooperativity of lower affinity binding sites. J. Biol. Chem 225, 9218–24Google Scholar
  76. Krieger, D.T. (1983) Brain peptides: what, where and why? Science, Wash. 222, 975–85Google Scholar
  77. Kupfermann, I. (1967) Stimulation of egg-laying: possible neuroendocrine function of bag cells of abdominal ganglion of Aplysia calif ornica. Nature (Lond.) 216, 814–15Google Scholar
  78. Kupfermann, I. and Weiss, K.R. (1976) Water regulation by a presumptive hormone contained in identified neurosecretory cell R15 of Aplysia. J. Gen. Physiol 67, 113–23Google Scholar
  79. Lane, D. and Koprowski, H. (1982) Molecular recognition and the future of mono-clonal antibodies. Nature (Lond.) 296, 200–2Google Scholar
  80. Leung, M.K. and Stefano, G.B. (1984) Isolation and identification of enkephalins in pedal ganglia of Mytilus edulis (Mollusca). Proc. Natl Acad. Sci. USA 81, 955–8Google Scholar
  81. Levitan, I.B., Harmar, A.J. and Adams, W.B. (1979) Synaptic and hormonal modu-lation of a neuronal oscillator — search for molecular mechanisms. J. exp. Biol 81, 131–51Google Scholar
  82. Livneh, E., Glazer, L., Segal, D., Schlessinger, J. and Shilsh, B-Z. (1985) Drosophila EGF receptor gene homolog — conservation of both hormone-binding and kinase domains. Cell 40, 599–607Google Scholar
  83. Lloyd, P.E., Kupfermann, I. and Weiss, K.R. (1984) Evidence for parallel actions of a molluscan peptide (SCPB) and serotonin in mediating arousal in Aplysia. Proc. Natl Acad. Sci. USA 81, 2934–7Google Scholar
  84. Lloyd, P.E., Kupfermann, I. and Weiss, K.R. (1985) Two endogenous Neuropeptides (SCPA and SCPB) produce a cAMP-mediated stimulation of cardiac activity in Aplysia. J. Comp. Physiol. A 156, 659–7Google Scholar
  85. Loh, Y.P., Brownstein, M.J. and Gainer, H. (1984) Proteolysis in neuropeptide processing and other neural functions. Ann. Rev. Neurosci 7, 189–222Google Scholar
  86. Loughton, B.G. and Orchard, I. (1981) The nature of the hyperglycaemic factor from the glandular lobe of the corpus cardiacum of Locusta migratoria. J. Insect Physiol 27, 383–5Google Scholar
  87. McAllister, L.B., Scheller, R.H., Kandel, E.R. and Axel, R. (1983) In situ hybrid-isation to study the origin and fate of identified neurons. Science, Wash. 222, 800–8Google Scholar
  88. Maddrell, S.H.P. (1974) Neurosecretion. In: Treherne, J.E. (ed.) Insect neurobiology, pp. 307–57, North-Holland, AmsterdamGoogle Scholar
  89. Maddrell, S.H.P. and Casida, J.E. (1971) Mechanism of insecticide-induced diuresis in Rhodnius. Nature (Lond.) 231, 55–6Google Scholar
  90. Maddrell, S.H.P. and Nordmann, J.J. (1979) Neurosecretion. Blackie, Glasgow.Google Scholar
  91. Maddrell, S.H.P. and Reynolds, S.E. (1972) Release of hormones in insects after poisoning with insecticides. Nature (Lond.) 236, 404–6Google Scholar
  92. Mahon, A.C. and Scheller, R.H. (1983) The molecular basis of a neuroendocrine fixed action pattern: egg laying in Aplysia. Cold Spring Harbor Symp. Quant. Biol 48, 405–12Google Scholar
  93. Mahon, A.C., Nambu, J.R., Taussig, R., Shyamala, M., Roach, A. and Scheller, R.H. (1985) Structure and expression of the egg-laying hormone gene family in Aplysia. J. Neurosci 5, 1872–80Google Scholar
  94. Mahon, A.C., Lloyd, P.E., Weiss, K.R., Kupfermann, I. and Scheller, R.H. (1985b) The small cardioactive peptides A and B of Aplysia are derived from a common precursor molecule. Proc. Natl Acad. Sci. USA 82, 3925–9Google Scholar
  95. Matsumoto, S., Isogai, A. and Suzuki, A. (1985) N-terminal amino acid sequence of an insect neurohormone, melanization and reddish coloration hormone (MRCH): heterogeneity and sequence homology with human insulin-like growth factor II. FEBS Lett. 189, 115–18Google Scholar
  96. Matsumoto, S., Isogai, A. and Suzuki, A. (1986) Isolation and amino terminal sequence of melanization and reddish coloration hormone (MRCH) from the silkworm, Bombyx mori. Insect Biochem. 16, 775–9Google Scholar
  97. Mayeri, E. and Rothman, B.S. (1982) Nonsynaptic peptidergic neurotransmission in the abdominal ganglion of Aplysia. In: Farner, D.S. and Lederis, K. (eds) Neurosecretion: molecules, cells, systems, pp. 305–15. Plenum, New YorkGoogle Scholar
  98. Mayeri, E., Brownell, P. and Branton, W.D. (1979a) Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. I. Effects on bursting pacemaker neurons. J. Neurophysiol 42, 1165–84Google Scholar
  99. Mayeri, E., Brownell, P. and Branton, W.D. (1979b) Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. II. Effects on beating pacemaker and silent neurons. J. Neurophysiol 42, 1185–97Google Scholar
  100. Mordue, W. and Stone, J.V. (1977) Relative potencies of locust adipokinetic hormone and prawn red-pigment concentrating hormone in insect and crustacean systems. Gen. Comp. Endocrinol 33, 103–8Google Scholar
  101. Morris, H.R., Panico, M., Karplus, A., Lloyd, P.E. and Riniker, B. (1982) Elucidation by FAB-MS of the structure of a new cardioactive peptide from Aplysia. Nature (Lond.) 300, 643–5Google Scholar
  102. Morris, H.R., Panico, M., Etienne, T., Tippins, J., Girgis, S.I. and Maclntyre, I. (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature (Lond.) 308, 746–8Google Scholar
  103. Muneoka, Y. and Saitoh, H. (1986) Pharmacology of FMRF amide in Mytilus catch muscle. Comp. Biochem. Physiol 85C, 201–14Google Scholar
  104. Myers, C.M. and Evans, P.D. (1985) The distribution of bovine pancreatic polypeptide FMRF amide-like immunoreactivity in the ventral nervous system of the locust. J. Comp. Neurol 234, 1–16Google Scholar
  105. Nachman, R.J., Holman, G.M., Haddon, W.F. and Ling, N. (1986a) Leucosul-fakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science, Wash. 234, 71–3Google Scholar
  106. Nachman, R.J., Holman, G.M., Cook, B.J., Haddon, W.F. and Ling, N. (1986b) Leucosulfakinin — II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem. Biophys. Res. Commun 140, 357–66Google Scholar
  107. Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Ishizaki, H., Mizoguchi, A., Fujiwara, Y. and Suzuki, A. (1984) Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science, Wash. 226, 1344–45Google Scholar
  108. Nagasawa, H., Kamito, T., Takahashi, S., Kogai, A., Fugo, H. and Suzuki, A. (1985) Eclosion hormone of the silkworm, Bombyx mori; purification and deter-mination of the N-terminal amino acid sequence. Insect Biochem. 15, 573–8Google Scholar
  109. Nakanishi, S., Inoue, A., Kita, T., Nakaimra, M., Chang, A.C.Y., Cohen, S.N. and Numa, S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin- P-lipotropin precursor. Nature (Lond.) 278, 423–7Google Scholar
  110. Nambu, J.R., Taussig, R., Mahon, A.C. and Scheller, R.H. (1983) Gene isolation with cDNA probes from identified Aplysia neurons: neuropeptide modulators of cardiovascular physiology. Cell 35, 47–56Google Scholar
  111. Nawa, H., Hirose, T., Takashima, H., Inayama, S. and Nakanishi, S. (1983) Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature (Lond.) 306, 32–6Google Scholar
  112. Nikolics, K., Mason, A.J., Szonyi, E., Ramachandran, J. and Seebury, P.H. (1985) A prolactin-inhibiting factor within the precursor for human gonadotropin- releasing hormone. Nature (Lond.) 316, 511–17Google Scholar
  113. Nishizuka, Y. (1984) Turnover of inositol phospholipids and signal transduction. Science, Wash. 225, 1365–70Google Scholar
  114. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanishi, S. and Numa, S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature (Lond.) 295, 202–6Google Scholar
  115. Ocorr, K.A. and Byrne, J.H. (1985) Membrane responses and changes in cAMP levels in Aplysia sensory neurons produced by serotonin, tryptamine, FMRF amide and small cardioactive peptideB (SCPB). Neurosci. Lett 55, 113–18Google Scholar
  116. O’Shea, M. and Adams, M.E. (1981) Pentapeptide (proctolin) associated with an identified neuron. Science, Wash. 213, 567–9 O’Shea, M. and Bishop, C.A. (1982) Neuropeptide proctolin associated with an identified skeletal motoneuron. J. Neurosci 2, 1242–51Google Scholar
  117. O’Shea, M. and Schaffer, M. (1985) Neuropeptide function: the invertebrate connection. Ann. Rev. Neurosci. 8, 171–98 O’Shea, M., Witten, J. and Schaffer, M. (1984) Isolation and characterization of two myactive Neuropeptides: further evidence of an invertebrate peptide family. J. Neurosci 4, 521–9Google Scholar
  118. Painter, S.D., Morley, J.S. and Price, D.A. (1982) Structure-activity relations of the molluscan neuropeptide FMRF amide on some molluscan muscles. Life Sci. 31, 2471–8Google Scholar
  119. Pelletier, G., Steinbusch, H.W.M. and Verhofstad, A.A.J. (1981) Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature (Lond.) 293, 71–2Google Scholar
  120. Petruzzelli, I., Herrera, R., Garcia, R. and Posen, D.M. (1985) In: Feramisco, J., Ozanne, B. and Stiles, C. (eds) Growth factors and transformation: cancer cells, vol. 3, pp. 115–21. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  121. Price, D.A., Cottrell, G.A., Doble, K.E., Greenberg, M.J., Jorenby, W., Lehman, H.K. and Riehm, J.P. (1985) A novel FMRF amide-related peptide in Helix pQDPFLRFamide. Biol. Bull. Mar. Biol. Lab. Woods Hole 169, 256–66Google Scholar
  122. Price, D.A. and Greenberg, M.J. (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science, Wash. 197, 670–1Google Scholar
  123. Quackenbush, L.S. and Fingerman, M. (1985) Enzyme-linked immunosorbent assay of black pigment dispersing hormone from the fiddler crab, Uca pugilator. Gen. Comp. Endocrinol, 57, 438–44Google Scholar
  124. Quistad, G.B., Adams, M.E., Scarborough, R.M., Carney, R.L. and Schooley, D.A. (1984) Metabolism of proctolin, a pentapeptide neurotransmitter in insects. Life Sci. 34, 569–76Google Scholar
  125. Raabe, M. (1982) Insect neurohormones. Plenum Press, New YorkGoogle Scholar
  126. Rao, K.R., Riehm, J.P., Zahnour, C.A., Kleinholz, L.H., Tarr, G.E., Johnson, L., Norton, S., Landau, M., Semmes, O.J., Sattelberg, R.M., Jorenby, W.H. and Hintz, M.F. (1985) Characterization of a pigment dispersing hormone in eye- stalks of the fiddler crab, Uca pugilator. Proc. Natl Acad. Sci. USA 82, 5319–22Google Scholar
  127. Reading, C.L. (1982) Theory and methods for immunisation in culture and monoclonal antibody production. J. Immunol. Meth 53, 261–91Google Scholar
  128. Remy, C. and Dubois, M.P. (1981) Immunohistological evidence of methionine enkephalin-like material in the brain of the migratory locust. Cell Tiss. Res 218, 271–8Google Scholar
  129. Rinehart, K.L. (1982) Fast atom bombardment mass spectrometry. Science, Wash. 218, 254–60Google Scholar
  130. Rosenfeld, M.G., Mermod, J-J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., Vale, W.W. and Evans, R.M. (1983) Production of a novel neuro-peptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature (Lond.) 304, 129–35Google Scholar
  131. Rothman, B.S., Mayeri, E., Brown, R.O., Yuan, P-M. and Shively, J.E. (1983) Primary structure and neuronal effects of a-bag cell peptide, a second candidate neurotransmitter encoded by a single gene in bag cell neurons of Aplysia. Proc. Natl Acad. Sci. USA 80, 5753–7Google Scholar
  132. Sasek, C.A., Schueler, P.A., Herman, W.S. and Elde, R.P. (1985) An antiserum to locust adipokinetic hormone reveals a novel peptidergic system in the rat central nervous system. Brain Res. 343, 172–5Google Scholar
  133. Scarborough, R.M., Jamieson, G.C., Kalish, F., Kramer, S.J., McEnroe, G.A., Miller, C.A. and Schooley, D.A. (1984) Isolation and primary structure of two peptides with cardioacceleratory and hyperglycaemic activity from the corpora cardiaca of Periplaneta americana. Proc. Natl Acad. Sci. USA 81, 5575–9Google Scholar
  134. Schaefer, M., Picciotto, M.R., Kreimer, T., Kaldany, R-R., Taussig, R. and Scheller, R.H. (1985) Aplysia neurons express a gene encoding multiple FMRF amide Neuropeptides Cell 41, 457–67Google Scholar
  135. Schaffer, M.H., Noyes, B.E. and O’Shea, M. (1984) Molecule biological studies of the sequenced insect Neuropeptides. Soc. Neurosci. Abstr 10, 152Google Scholar
  136. Schaller, H.C. and Bodenmuller, H. (1981) Isolation and amino acid sequence of a morphogenic peptide from Hydra. Proc. Natl Acad. Sci. USA 78, 7000–4Google Scholar
  137. Schaller, H.C., Hoffmeister, S. and Bodenmuller, H. (1984) Hormonal control of regeneration in Hydra. In: Hoffman, J. and Porchet, M. (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones, pp. 5–9. Springer- Verlag, BerlinGoogle Scholar
  138. Scheller, R.H., Jackson, J.F., McAllister, L.B., Schwartz, J.H., Kandel, E.R. and Axel, R. (1982) A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behaviour in Aplysia. Cell 28, 707–19Google Scholar
  139. Scheller, R.H., Jackson, J.F., McAllister, L.B., Rothman, B.S., Mayeri, E. and Axel, R. (1983) A single gene encodes multiple Neuropeptides mediating a stereotyped behaviour. Cell 35, 7–22Google Scholar
  140. Scheller, R., Kaldany, R.R., Kreiner, T., Mahon, A.C., Nambu, J.R., Schaefer, M. and Taussig, R. (1984) Neuropeptides: mediators of behaviour in Aplysia. Science, Wash 225, 1300–8Google Scholar
  141. Schlesinger, D.H., Babirak, S.P. and Blankenship, J.E. (1981) Primary structure of an egg-releasing peptide from the atrial gland of Aplysia californca. In: Schlesinger, D.H. (ed.) Symposium on neurohypophyseal peptide hormones and other biologically active peptides, pp. 137–50. Elsevier North Holland Biomedical Press, New YorkGoogle Scholar
  142. Schooneveld, H., Romberg-Privee, H.M. and Veenstra, J.A. (1985) Adipokinetic hormone-immunoreactive peptide in the endocrine and central nervous system of several insect species. A comparative immunocytochemical approach. Gen. Comp. Endocrinol 57, 184–94Google Scholar
  143. Schooneveld, H., Tesser, G.I., Veenstra, J.A. and Romberg-Privee, H. (1983) Adipokinetic hormone and AKH-like peptide demonstrated in the corpora cardiaca and nervous system of Locusta migratoria by immunocytochemistry. Cell Tissue Res. 230, 67–76Google Scholar
  144. Schot, L.P.C., Boer, H.H., Swaals, D.F. and Van Noorden, S. (1981) Immunocyto-chemical demonstration of peptidergic neurons in the central nervous system of the pond snail, Lymnaea stagnalis, with antisera raised to biologically active peptides of vertebrates. Cell Tiss. Res 216, 273–91Google Scholar
  145. Schramm, M. and Selinger, Z. (1984) Message transmission: receptor controlled adenylate cyclase system Science, Wash. 225, 1350–6Google Scholar
  146. Schueler, P.A., Elde, R.P., Herman, W.S. and Mahoney, W.C. (1986) Identification and initial characterization of adipokinetic hormone-like immunoreactive peptides of rat origin. J. Neurochem 47, 133–8Google Scholar
  147. Schwartz, J.C. (1983) Metabolism of enkephalins and the inactivating neuro- peptidase concept. Trends Neurosci. 6, 45–8Google Scholar
  148. Schwarz, T.L., Lee, G.M.H., Siwicki, K.K., Standaert, D.G. and Kravitz, E.A. (1984) Proctolin in the lobster: the distribution, release and characterisation of a likely neurohormone. J. Neurosci 4, 1300–11Google Scholar
  149. Sedlmeier, D. and Keller, R. (1981) The mode of action of the crustacean neurosecretory hyperglycemic hormone. I. Involvement of cyclic nucleotides. Gen. Comp. Endocrinol 45, 82–90Google Scholar
  150. Seecoff, R.L. and Dewhurst, S. (1974) Insulin is a Drosophila hormone and acts to enhance the differentiation of embryonic Drosophila cells. Cell Diff. 3, 63–70Google Scholar
  151. Shymala, J.R., Nambu, J.R. and Scheller, R.H. (1986) Expression of the egg-laying hormone gene family in the head ganglia of Aplysia. Brain Res. 371, 49–57Google Scholar
  152. Siegert, K.J. and Mordue, W. (1986) Quantification of adipokinetic hormones I and II in the corpora cardiaca of Schistocerca gregaria and Locusta migratoria, Comp. Biochem. Physiol 84A, 279–84Google Scholar
  153. Siegert, K., Morgan, P. and Mordue, W. (1985) Primary structures of locust adipokinetic hormones II. Biol Chem. Hoppe-Seyler, 336, 723–7Google Scholar
  154. Siegert, K. and Ziegler, R. (1983) A hormone from the corpora cardiaca controls fat body glycogen phosphorylase during starvation in tobacco hornworm larvae. Nature (Lond.) 307, 526–7Google Scholar
  155. Singh, G.J.P. and Orchard, I. (1982) Is insecticide-induced release of insect neurohormones a secondary effect of hyperactivity of the central nervous system? Pest. Biochem. Physiol 17. 232–42Google Scholar
  156. Siwicki, K.K. and Kravitz, E.A. (1984) Proctolin colocalizes with several different transmitters in lobster neurons. Soc. Neurosci. Abstr 10, 152Google Scholar
  157. Smith, W.A., Gilbert, L.I. and Bollenbacher, W.E. (1984) The role of cyclic AMP in ecdysone synthesis. Molec. Cell Endocrinol, 37, 285–94Google Scholar
  158. Smith, W.A., Gilbert, L.I. and Bollenbacher, W.E. (1985) Calcium-cyclic AMP interactions in prothoracicotropic hormone stimulation of ecdysone synthesis. Molec. Cell Endocrinol 39, 71–8Google Scholar
  159. Smyth, D.G., Zakarian, S., Deakin, J.F.W. and Massey, D.E. (1981) p-Endorphin related peptides in the pituitary gland: isolation, identification and distribution. In: Peptides of the pars intermedia, (Ciba Foundation Symposium 81), pp, 79–96. Pitman Medical, LondonGoogle Scholar
  160. Snyder, S.H. (1980) Brain peptides as neurotransmitters. Science, Wash. 209, 976- 83Google Scholar
  161. Stangier, J., Hilbrich, C., Beyreuther, K. and Keller, R. (1986) Isolation and characterisation of a crustacean cardioactive peptide (CCAP) from pericardial organs of the shore crab, Carcinusmaenas. Bull Soc. Zool France III, 28Google Scholar
  162. Starratt, A.N. and Brown, B.E. (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci. 17, 1253–6Google Scholar
  163. Starratt, A.N. and Brown, B.E. (1979) Analogs of the insect myotropic peptide proctolin: synthesis and structure-activity studies. Biochem. Biophys. Res. Commun 90, 1125–30Google Scholar
  164. Starratt, A.N. and Steele, R.W. (1984) In vivo inactivation of the insect neuropeptide proctolin in Periplaneta americana. Insect Biochem. 14, 97–102Google Scholar
  165. Steele, R.W. and Starratt, A.N. (1985) In vitro inactivation of the insect neuropeptide proctolin in haemolymph from Periplaneta americana. Insect Biochem. 15, 511–19Google Scholar
  166. Stefano, G.B., Kream, R.M. and Zukin, R.S. (1980) Demonstration of stereo- specific opiate binding in the nervous tissue of the marine mollusc, Mytilus edulis. Brain Res. 181, 440–5Google Scholar
  167. Stefano, G.B. and Leung, M.K. (1984) Presence of met-enkephalin-Arg6-Phe7 in molluscan neural tissues. Brain Res. 298, 362–5Google Scholar
  168. Stefano, G.B. and Scharrer, B. (1981) High affinity binding of an enkephalin analog in the cerebral ganglion of the insect Leucophaea maderae (Blattaria) Brain Res. 225, 107–14Google Scholar
  169. Stefano, G.B., Scharrer, B. and Assanah, P. (1982) Demonstration, characterisation and localisation of opioid binding sites in the midgut of the insect Leucophaea maderae (Blattaria). Brain Res. 253, 205–12Google Scholar
  170. Stern, A.S., Lewis, R.V., Kimura, S., Rossier, J., Gerber, L.D., Brink, L., Stein, S. and Udenfriend, S. (1979) Isolation of the opioid heptapeptide Met-enkephalin (Arg6-Phe7) from bovine adrenal medullary granules and striatum. Proc. Natl Acad. Sci. USA 76, 6680–3Google Scholar
  171. Stone, J.V., Mordue, W., Batley, K.E. and Morris, H.R. (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature (Lond.) 263, 207–11Google Scholar
  172. Stone, J.V., Mordue, W., Broomfield, C.E. and Hardy, P.M. (1978) Structure- activity relationships for the lipid mobilizing action of adipokinetic hormone action of adipokinetic hormone. Synthesis and activity of a series of hormone analogues. Eur. J. Biochem 89, 195–202Google Scholar
  173. Sullivan, R.E. and Newcomb, R.W. (1982) Structure function analysis of an arthropod peptide hormone: proctolin and synthetic analogues compared on the cockroach hindgut receptor. Peptides 3, 337–44Google Scholar
  174. Taghert, P.H. and Truman, J.W. (1982) Identification of the bursicon-containing neurons in abdominal ganglia of the tobacco hornworm Manduca sexta. J. exp. Biol 98, 385–402Google Scholar
  175. Taghert, P.H., Tublitz, N.J., Truman, J.W. and Goodman, C.S. (1984) Monoclonal antibodies that recognise cardioactive peptides in the moth, Manduca sexta. Soc. Neurosci. Abstr 10, 152Google Scholar
  176. Takeda, S., Vieillemaringe, J., Geffard, M. and Remy, C. (1986) Immunohistological evidence of dopamine cells in the cephalic nervous system of the silkworm Bombyx mori. Coexistence of dopamine and a-endorphin-like substance in neurosecretory cells of the suboesophageal ganglion. Cell Tiss. Res 243, 125–8Google Scholar
  177. Tang, J., Yang, H.Y.T. and Costa, E. (1984) Inhibition of spontaneous and opiate- modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe- NH2-like immunoreactivity. Proc. Natl Acad. Sci. USA 81, 5002–5Google Scholar
  178. Taussig, R., Kaldany, R.R. and Scheller, R.H. (1984) A cDNA close encoding Neuropeptides isolated from Aplysia neuron Lll. Proc. Natl Acad. Sci. USA 84, 4988–92Google Scholar
  179. Thompson, K.L. Decker, S.J. and Rosner, M.R. (1985) Identification of a novel receptor in Drosophila for both epidermal growth factor and insulin. Proc. Natl Acad. Sci. USA 82, 8443–7Google Scholar
  180. Thorpe, A. and Duve, H. (1984) Immunochemical applications in the study of insect Neuropeptides with special emphasis on the peptides of vertebrate type. In: Borkovec, A.B. and Kelly, T.J. (eds) Insect neurochemistry and neurophysiology, pp. 197–222. Plenum, New YorkGoogle Scholar
  181. Truman, J.W. (1980) Cellular aspects of eclosion hormone action on the CNS of insects. In: Sattelle, D.B., Hall, L.M. and Hildebrand, J.G. (eds) Receptors for neurotransmitters, hormones and pheromones in insects,pp. 223–32. Elsevier, North Holland Biomedical Press, AmsterdamGoogle Scholar
  182. Truman, J.W., Mumby, S.M. and Welch, S.K. (1979) Involvement of cyclic GMP in the release of stereotyped behaviour patterns in moths by peptide hormone. J. exp. Biol 84, 201–12Google Scholar
  183. Tublitz, N.J. and Truman, J.W. (1985) Identification of neurones containing cardioaccelerating peptides (CAPS) in the ventral nerve cord of the tobacco hawkmoth, Manduca sexta. J. exp. Biol 116, 395–410Google Scholar
  184. Tublitz, N.J., Taghert, P.H. and Evans, P.D. (1985) A monoclonal antibody acts as a functional blocker of cardioacceleratory peptide activity in the tobacco hawkmoth, Manduca sexta. Soc. Neurosci. Abstr 11, 326Google Scholar
  185. Valentino, K.L., Winter, J. and Reichard, L.F. (1985) Applications of monoclonal antibodies to neuroscience research. Ann. Rev. Neurosci 8, 199–232Google Scholar
  186. Vreugdenhil, E., Geraerts, W.P.M., Jackson, J.F. and Joose, J. (1985) The molecular basis of the neuroendocrine control of egg-laying behaviour in Lymnaea. Peptides (Fayetteville, NY) 6 (Suppl. 3), 465–70Google Scholar
  187. Walsh, K.A., Ericsson, L.H., Parmelee, D.C. and Titani, K. (1981) Advances in protein sequencing. Ann. Rev. Biochem 50, 261–84Google Scholar
  188. Watson, W.H., Angustine, G.J. and Benson, J.A. (1983) Proctolin and an endogenous proctolin-like peptide enhance the contractivity of the Limulus heart, J. exp. Biol 103, 55–73Google Scholar
  189. White, J.D., Stewart, K.D., Krause, J.E. and McKelvy, J.F. (1985) Biochemistry of peptide-secreting neurons. Physiol Rev. 65, 553–606Google Scholar
  190. Williams, C.M. (1967) The present status of the brain hormone. In: Beament, J.W.L. and Treherne, J.E. (eds) Insects and physiology, pp. 133–9, Oliver & Boyd, EdinburghGoogle Scholar
  191. Witten, J., Schaffer, M.A., O’Shea, M., Cook, J.C., Hemling, M.E. and Rinehart, K.L. (1984) Structure of two cockroach Neuropeptides assigned by fast atom bombardment mass spectrometry. Biochem. Biophys. Res. Commun. 124, 350- 358Google Scholar
  192. Witten, J.L. and O’Shea, M. (1985) Peptidergic innervation of insect skeletal muscle: immunochemical observations. J. Comp. Neurol 242, 93–101Google Scholar
  193. Yang, H.Y.T., Fratta, W., Majane, E.A. and Costa, E. (1985) Isolation, sequencing, synthesis, and pharmacological characterisation of two brain Neuropeptides that modulate the action of morphine. Proc. Natl Acad. Sci. USA 82, 7757–61Google Scholar
  194. Ziegler, R., Eckart, K., Schwarz, H. and Keller, R. (1985) Amino acid sequence of Manduca sexta adipokinetic hormone elucidated by combined fast atom bombardment (FAB)/tandem mass spectrometry. Biochem. Biophys. Res. Commun 133, 337–42Google Scholar
  195. Zukin, R.S. and Zukin, S.R. (1984) The case for multiple opiate receptors. Trends Neurosci. 7, 160–4Google Scholar

Copyright information

© G.G. Lunt and R.W. Olsen 1988

Authors and Affiliations

There are no affiliations available

Personalised recommendations