Skip to main content

Abstract

Peptides are now recognised as by far the largest and most structurally diverse class of neuroculatory substances (Snyder, 1980; Iversen, 1983; Krieger, 1983). This is true not only for vertebrates (Krieger, 1983, listed 38 known brain peptides) but also for invertebrates (see Table 5.1). The realisation that peptides play an important role within the brain has come only recently, being largely a result of improved techniques for physically handling and chemically manipulating the tiny quantities of peptides characteristically present in nervous tissue. Of course, peptides have been studied for much longer than this in their role as neurohormones. Indeed it is true to say that we still know most about those neuropeptides (vasopressin is a vertebrate example) that have neurohormonal functions, many (if not all) of which also have modulatory or transmitter roles within the brain. However, it is now clear that neuropeptides also exist (e. g. substance P) that have no known function as circulating regulatory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, T.W., Castellucci, V.F., Camardo, J.S., Kandel, E.R. and Lloyd, P.E. (1984) Two endogenous Neuropeptides modulate the gill and siphon withdrawal reflex in Aplysia by presynaptic facilitation involving cAMP-dependent closure of a serotonin-sensitive potassium channel. Proc. Natl Acad. Sci. USA 81, 7956- 60

    Google Scholar 

  • Adams, M.E. and O’Shea, M. (1983) Peptide cotransmitter at a neuromuscular junction. Science, Wash. 221, 286–9

    Google Scholar 

  • Adams, M.E. and Phelps, M.N. (1983) Colocalization of bursicon bioactivity with proctolin in identified neurons. Soc. Neurosci. Abstr 9, 313

    Google Scholar 

  • Agui, N., Granger, N.A., Gilbert, L.I. and Bollenbacher, W.E. (1979) Cellular localization of the insect prothoracicotropic hormone: in vitro assay of a single neurosecretory cell. Proc. Natl Acad. Sci. USA 76, 5694–8

    Google Scholar 

  • Amara, S.G., Jonas, V., Rosenfeld, M.G., Ong, E.S. and Evans, R.H. (1982) Alternative RNA processing in calcitonin gene expression generates MRMAS encoding different polypeptide products. Nature (Lond.) 298, 240–4

    Google Scholar 

  • Barnard, C.S. and Dockray, G.J. (1984) Increases in arterial blood pressure in the rat in response to a new vertebrate neuropeptide, LPLRFAMIDE, and a related molluscan peptide, FMRFAMIDE. Reg. Peptides 8, 209–15

    Google Scholar 

  • Bennett, G.W., Brazell, M.P. and Marsden, C.A. (1981) Electrochemistry of Neuropeptides: a possible method for assay and in vivo detection. Life Sci. 29, 1001–7

    Google Scholar 

  • Berridge, M.J., Buchan, P.B. and Heslop, J.P. (1984) Relationship of polyphosphoinositide metabolism to the hormonal activation of the insect salivary gland by 5-hydroxytryptamine. Molec. Cell. Endocrinol 36, 37–42

    Google Scholar 

  • Berridge, M.J. and Irvine, R.F. (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312, 315–21

    Google Scholar 

  • Bishop, C.A. and O’Shea, M. (1982) Neuropeptide proctolin (H-Arg-Tyr-Leu-Thr- OH): immunocytochemical mapping of neurons in the central nervous system of the cockroach. J. Comp. Neurol 207, 223–38

    Google Scholar 

  • Bishop, C.A., O’Shea, M. and Miller, R.J. (1981) Neuropeptide proctolin (H-Arg- Tyr-Leu-Pro-Thr-OH): immunological detection and neuronal localization in the insect central nervous system. Proc. Natl Acad. Sci. USA 78, 5899–6002

    Google Scholar 

  • Bishop, C.A., Wine, J.J. and O’Shea, M. (1984) Neuropeptide proctolin in postural motorneurons of the crayfish. J. Neurosci 4, 2001–9

    Google Scholar 

  • Blobel, G. (1980) Intracellular protein topogenesis. Proc. Natl Acad. Sci. USA 77, 1496–1500

    Google Scholar 

  • Bodenmuller, H. and Schaller, H.C. (1981) Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature (Lond.) 293, 579–80

    Google Scholar 

  • Bollenbacher, W.E., Katahira, E.J., O’Brien, M., Gilbert, L.I., Thomas, M.K., Agui, N. and Baumhover, A.H. (1984) Insect prothoracicotropic hormone: evidence for two molecular forms. Science, Wash. 224, 1243–5

    Google Scholar 

  • Brain, S.D., Williams, T.J., Tippins, J.R., Morriss, H.R. and Mclntyre, I. (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature (Lond.) 313, 54–6

    Google Scholar 

  • Brownell, P. and Mayeri, E. (1979) Prolonged inhibition of neurons by neuroendocrine cells in Aplysia. Science, Wash. 204, 417–20

    Google Scholar 

  • Campbell, A.K. (1983) Intracellular calcium: its universal role as regulator. Wiley, Chichester

    Google Scholar 

  • Chan-Palay, V., Jonsson, G. and Palay, S.L. (1978) Serotonin and substance P coexist in neurons of the rat’s central nervous system. Proc. Natl Acad. Sci. USA 75, 1582–6

    Google Scholar 

  • Chiu, A.Y., Hunkapiller, M.W., Heller, E., Stuart, D.K., Hood, L.E. and Strumwasser, F. (1979) Neuropeptide egg-laying hormone of Aplysia: purification and primary structure. Proc. Natl Acad. Sci. USA 76, 6656–60

    Google Scholar 

  • Coletti-Previero, M-A., Mattras, H., Zwilling, R. and Previero, A. (1985) Enkephalin-degrading activity in arthropod hemolymph. Neuropeptides 6, 405–15

    Google Scholar 

  • Copenhaver, P.F. and Truman, J.W. (1986) Identification of the cerebral neuro-secretory cells that contain eclosion hormone in the moth Manduca sexta. J. Neurosci 6, 1738–47

    Google Scholar 

  • Cottrell, G.A. (1982) FMRFAMIDE Neuropeptides simultaneously increase and decrease potassium currents in an identified neuron. Nature (Lond.) 296, 87–9

    Google Scholar 

  • Cottrell, G.A., Davies, N.W. and Green, K.A. (1984) Multiple actions of a mollus-can cardio-excitatory neuropeptide and related peptides on identified Helix neurons. J. Physiol. (Lond.) 356, 315–34

    Google Scholar 

  • Dockray, G.J., Reeve, J.R., Shively, J., Gayson, R.J. and Barnard, C.S. (1983) A novel active pentapeptide from chicken brain identified by antibodies to FMRF- amide. Nature (Lond.) 305, 328–30

    Google Scholar 

  • Dockray, G.J. and Williams, R.G. (1983) Phenylalanylmethionylarginylpheny- lalaninamide-like immunoreactivity in rat brain: development of a radioimmunoassay and its application in studies of distribution and chromatographic properties. Brain Res. 266, 295–303

    Google Scholar 

  • Douglass, J., Civelli, O. and Herbert, E. (1984) Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Ann. Rev. Biochem. 53, 665–750

    Google Scholar 

  • Dua, A.K., Pinsky, C. and LaBella, F.S. (1985) Peptidases that terminate the action of enkephalins. Consideration of physiological importance for amino-, carboxy-, and pseudoenkephalinase. Life Sci. 37, 985–92

    Google Scholar 

  • Dunbar, S.J. and Huddart, H. (1982) Calcium movements in insect visceral muscle. Comp. Biochem. Physiol. 71 A, 425–37

    Google Scholar 

  • Duve, H., Thorpe, A. and Lazarus, N.R. (1979) Isolation of material displaying insulin-like immunological and biological activity from the brain of the blowfly, Calliphora vomitoria. Biochem. J 184, 221–7

    Google Scholar 

  • Ebberink, R.H.M., van Loenhout, H., Geraerts, W.P.M. and Joosse, J. (1985) Purification and amino acid sequence of the ovulation hormone of Lymnaea stagnalis. Proc. Natl Acad. Sci. USA 82, 7767–71

    Google Scholar 

  • Eekart, K., Schwartz, H., Chorev, M. and Gilon, C. (1986) Sequence determination of N-terminal and C-terminal blocked peptides containing N-alkylated amino acids and structure determination of these amino acid constituents by using fast- atom bombardment/tandem mass spectrometry. Eur. J. Biochem 157, 209–16

    Google Scholar 

  • Eckert, M., Agricola, H. and Penzlin, H. (1981) Immunocytochemical identification of proctolin-like immunoreactivity in the terminal ganglion and hindgut of the cockroach Periplaneta americana (L). Cell Tiss. Res 217, 633–45

    Google Scholar 

  • El-Salhy, M., Falkmer, S., Kramer, K.J. and Spiers, R.D. (1983) Immunohisto- chemical investigations of Neuropeptides in the brain, corpora cardiaca and corpora allata of an adult lepidopteran insect, Manduca sexta (L). Cell Tiss. Res 232, 295–317

    Google Scholar 

  • Fernlund, P. (1976) Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochim. Biophys. Acta 439, 17–25

    Google Scholar 

  • Fernlund, P. and Josefsson, L. (1972) Crustacean color-change hormone: amino acid sequence and chemical synthesis. Science, Wash. 177, 173–5

    Google Scholar 

  • Ford, R., Jackson, D.M., Tetrault, L., Torres, J.C., Assanah, P., Harper, J., Leung, M.K. and Stefano, G.B. (1986) A behavioural role for enkephalins in regulating locomotor activity in the insect Leucophaea maderae: evidence for high affinity kappa-like opioid binding sites. Comp. Biochem. Physiol 55C, 61–6

    Google Scholar 

  • Fox, A.M. and Reynolds, S.E. (1986) Enzymatic degradation of an insect neuropeptide by haemolymph. Bull. Soc. Zool. France III, 36

    Google Scholar 

  • Gade, G. (1986) Relative hypertrehalosaemic activities of naturally occurring Neuropeptides from the AKH/RPCH family. Z. Naturforsch 41C, 315–20

    Google Scholar 

  • Gade, G., Goldsworthy, G., Schaffer, M.H., Cook, J.C. and Rinehart, K.L. (1986) Sequence analysis of adipokinetic hormones II from corpora cardiaca of Schistocerca nitens, Schistocerca gregaria, and Locusta migratoria by fast atom bombardment mass spectrometry. Biochem. Biophys. Res. Commun. 134, 723- 30

    Google Scholar 

  • Goldsworthy, G.J., Mallison, K., Wheeler, C.H. and Gade, G. (1986) Relative adipokinetic activities of members of the adipokinetic hormone/red pigment concentrating hormone family. J. Insect. Physiol 32, 433–8

    Google Scholar 

  • Greenberg, M.J., Painter, S.D., Doble, K.E., Nagle, G.T., Price, D.A. and Lehman, H.K. (1983) The molluscan neurosecretory peptide FMRF amide: comparative pharmacology and relationships to enkephalins. Fed. Proc, 42, 82–6

    Google Scholar 

  • Greenberg, H.J. and Price, D.A. (1983) Invertebrate Neuropeptides: native and naturalized. Ann. Rev. Physiol 45, 271–88

    Google Scholar 

  • Gros, E., Lafon-Cazal, M. and Dray, F. (1978) Presence de substances immuno- réactivement apparentées aux encephalines chez un insecte, Locusta migratoria. C. R. Acad. ScL Paris 287, 647–50

    Google Scholar 

  • Gubler, U., Seeburg, P., Hoffman, B.J., Gage, L.P. and Udenfriend, S. (1982) Molecular cloning establishes pro-enkephalin as precursor of enkephalin- containing peptides. Nature (Lond.) 295, 206–8

    Google Scholar 

  • Gupta, A.P. (ed). (1983) Neurohormonal organs of arthropods. C. Thomas, Springfield, 111.

    Google Scholar 

  • Haaijman, J.J., Deen, C., Krose, C.J.M., Zijlstra, J.J., Coolen, J. and Radl, J. (1984) Monoclonal antibodies in immunocytology; a jungle of pitfalls. Immunology Today 5, 56–8

    Google Scholar 

  • Haynes, L.W. (1980) Peptide neuroregulators in invertebrates. Progr. Neurobiol. 15, 205–45

    Google Scholar 

  • Heller, E., Kaczmarek, L.K., Hunkapiller, M.W., Hood, L.E. and Strumwasser, F. (1980) Purification and primary structure of two neuroactive peptides that cause bag cell after discharge and egg-laying in Aplysia. Proc. Natl Acad. Sci. USA 77, 2328–32

    Google Scholar 

  • Higgins, W.J., Price, D.A. and Greenberg, M.J. (1978) FMRF amide increases the adenylate cyclase activity and cyclic AMP level of molluscan heart. Eur. J. Pharmacol 48, 425–30

    Google Scholar 

  • Hokfelt, T., Johansson, O. and Goldstein, M. (1984) Chemical anatomy of the brain. Science, Wash. 225, 1326–34

    Google Scholar 

  • Holman, G.M., Cook, B.J. and Nachman, R.J. (1986a) Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach Leucophaea maderae. Comp. Biochem. Physiol 85C, 219–24

    Google Scholar 

  • Holman, G.M., Cook, B.J. and Nachman, R.J. (1986b) Isolation, primary structure and synthesis of two Neuropeptides from Leucophaea maderae: members of a new family of cephalomyotropins. Comp. Biochem. Physiol, 84C, 205–11

    Google Scholar 

  • Holman, G.M., Cook, B.J. and Nachman, R.J. (1986c) Primary structure and synthesis of two additional Neuropeptides from Leucophaea maderae: members of a new family of cephalomyotropins. Comp. Biochem. Physiol 84C, 271–6

    Google Scholar 

  • Holman, G.M., Cook, B.J. and Nachman, R.J. (1986d) Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp. Biochem. Physiol 850, 329–33

    Google Scholar 

  • Hunkapiller, M., Kent, S., Caruthers, M., Dreyer, W., Firca, J., Giffin, C., Horvath, S., Hunkapiller, T. and Hood, L. (1984) A microchemical facility for the analysis and synthesis of genes and proteins. Nature (Lond.) 310, 105–11

    Google Scholar 

  • Ishizaki, H. and Suzuki, A. (1984) The prothoracicotropic hormone of Bombyx mori. In: Hoffmann, J. and Parchet, M. (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones, pp. 63–77. Springer-Verlag, Berlin

    Google Scholar 

  • Iversen, L.L. (1983) Neuropeptides — what next? Trends Neurosci. 6, 293–94

    Google Scholar 

  • Jaffe, H., Raina, A.K., Riley, C.T., Fraser, B.A., Holman, G.M., Wagner, R.M., Ridgeway, R.L. and Hayes, D.K. (1986) Isolation and primary structure of a peptide from the corpora cardiaca of Heliothis zea with adipokinetic activity. Biochem. Biophys. Res. Commun 135, 622–8

    Google Scholar 

  • Jaros, P.P. and Keller, R. (1979) Radioimmunoassay of an invertebrate peptide hormone — the crustacean hyperglycaemic hormone. Experientia 35, 1252–3

    Google Scholar 

  • Jennings, K.R., Steele, R.W. and Starratt, A.N. (1983) Cyclic AMP actions on proctolin- and neurally-induced contractions of the cockroach hindgut. Comp. Biochem. Physiol 74C, 69–74

    Google Scholar 

  • Joosse, J. (1984) Recent progress in the endocrinology of molluscs. In: Hoffmann, J. and Parchet, M. (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones, pp. 19–35. Springer-Verlag, Berlin

    Google Scholar 

  • Joosse, J. and Geraerts, W.P.M. (1983) In: Salenddin, A.S.M. and Wilbur, K.M. (eds) The Mollusca, Vol IV. Physiology, Part I, pp. 317–406. Academic Press, London.

    Google Scholar 

  • Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S. and Numa, S. (1982) Cloning and sequence analysis of cDNA for porcine 3-neo-endorphin/dynorphin precursor. Nature (Lond.) 298, 245–9

    Google Scholar 

  • Kaldany, R.J., Namton, J.R. and Scheller, R.H. (1985) Neuropeptides in identified Aplysia neurons. Ann. Rev. Neurosci 8, 431–55

    Google Scholar 

  • Kandel, E.R. (1976) Cellular basis of behaviour. An introduction to behavioural neurobiology. W.H. Freeman, San Francisco

    Google Scholar 

  • Kaupp, U.B. and Koch, K.W. (1986) Mechanism of photoreception in vertebrate vision. Trends Biochem. Sci 11, 43–7

    Google Scholar 

  • Keller, R. (1983) Biochemistry and specificity of the neurohaemal hormones in crustacea. In: Gupta, A.P. (ed.) Neurohaemal organs of arthropods, pp. 118–48. C. Thomas, Springfield, 111.

    Google Scholar 

  • Kenny, J. (1986) Cell surface peptidases are neither peptide- nor organ-specific. Trends Biochem. Sci 11, 40–2

    Google Scholar 

  • Keshishian, H. and O’Shea, M. (1985) The distribution of a peptide neurotransmitter in the postembryonic grasshopper central nervous system. J. Neurosci 5, 992–1004

    Google Scholar 

  • Kiehling, C, Martin, R., Geis, R., Bickel, U. and Voigt, K.H. (1984) Cardioexcitatory and opioid activity in extracts from nerve-tissue of Octopus vulgaris. Gen. Comp. Endocrinol 53, 467–8

    Google Scholar 

  • Kingan, T.G. and Titmus, M. (1983) Radioimmunologic detection of proctolin in arthropods. Comp. Biochem. Physiol. C 74, 75–8

    Google Scholar 

  • Kirschbaum, J.B. (1985) Potential implication of genetic engineering and other biotechnologies to insect control. Ann. Rev. Entomol 30, 51–70

    Google Scholar 

  • Kramer, K.J., Childs, C.N., Spiers, R.D. and Jacobs, R.M. (1982) Purification of insulin-like peptides from insect haemolymph and royal jelly. Insect Biochem. 12, 91–8

    Google Scholar 

  • Kream, R.M., Zukin, R.S. and Stefano, G.B. (1980) Demonstration of two classes of opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis. Positive homotrophic cooperativity of lower affinity binding sites. J. Biol. Chem 225, 9218–24

    Google Scholar 

  • Krieger, D.T. (1983) Brain peptides: what, where and why? Science, Wash. 222, 975–85

    Google Scholar 

  • Kupfermann, I. (1967) Stimulation of egg-laying: possible neuroendocrine function of bag cells of abdominal ganglion of Aplysia calif ornica. Nature (Lond.) 216, 814–15

    Google Scholar 

  • Kupfermann, I. and Weiss, K.R. (1976) Water regulation by a presumptive hormone contained in identified neurosecretory cell R15 of Aplysia. J. Gen. Physiol 67, 113–23

    Google Scholar 

  • Lane, D. and Koprowski, H. (1982) Molecular recognition and the future of mono-clonal antibodies. Nature (Lond.) 296, 200–2

    Google Scholar 

  • Leung, M.K. and Stefano, G.B. (1984) Isolation and identification of enkephalins in pedal ganglia of Mytilus edulis (Mollusca). Proc. Natl Acad. Sci. USA 81, 955–8

    Google Scholar 

  • Levitan, I.B., Harmar, A.J. and Adams, W.B. (1979) Synaptic and hormonal modu-lation of a neuronal oscillator — search for molecular mechanisms. J. exp. Biol 81, 131–51

    Google Scholar 

  • Livneh, E., Glazer, L., Segal, D., Schlessinger, J. and Shilsh, B-Z. (1985) Drosophila EGF receptor gene homolog — conservation of both hormone-binding and kinase domains. Cell 40, 599–607

    Google Scholar 

  • Lloyd, P.E., Kupfermann, I. and Weiss, K.R. (1984) Evidence for parallel actions of a molluscan peptide (SCPB) and serotonin in mediating arousal in Aplysia. Proc. Natl Acad. Sci. USA 81, 2934–7

    Google Scholar 

  • Lloyd, P.E., Kupfermann, I. and Weiss, K.R. (1985) Two endogenous Neuropeptides (SCPA and SCPB) produce a cAMP-mediated stimulation of cardiac activity in Aplysia. J. Comp. Physiol. A 156, 659–7

    Google Scholar 

  • Loh, Y.P., Brownstein, M.J. and Gainer, H. (1984) Proteolysis in neuropeptide processing and other neural functions. Ann. Rev. Neurosci 7, 189–222

    Google Scholar 

  • Loughton, B.G. and Orchard, I. (1981) The nature of the hyperglycaemic factor from the glandular lobe of the corpus cardiacum of Locusta migratoria. J. Insect Physiol 27, 383–5

    Google Scholar 

  • McAllister, L.B., Scheller, R.H., Kandel, E.R. and Axel, R. (1983) In situ hybrid-isation to study the origin and fate of identified neurons. Science, Wash. 222, 800–8

    Google Scholar 

  • Maddrell, S.H.P. (1974) Neurosecretion. In: Treherne, J.E. (ed.) Insect neurobiology, pp. 307–57, North-Holland, Amsterdam

    Google Scholar 

  • Maddrell, S.H.P. and Casida, J.E. (1971) Mechanism of insecticide-induced diuresis in Rhodnius. Nature (Lond.) 231, 55–6

    Google Scholar 

  • Maddrell, S.H.P. and Nordmann, J.J. (1979) Neurosecretion. Blackie, Glasgow.

    Google Scholar 

  • Maddrell, S.H.P. and Reynolds, S.E. (1972) Release of hormones in insects after poisoning with insecticides. Nature (Lond.) 236, 404–6

    Google Scholar 

  • Mahon, A.C. and Scheller, R.H. (1983) The molecular basis of a neuroendocrine fixed action pattern: egg laying in Aplysia. Cold Spring Harbor Symp. Quant. Biol 48, 405–12

    Google Scholar 

  • Mahon, A.C., Nambu, J.R., Taussig, R., Shyamala, M., Roach, A. and Scheller, R.H. (1985) Structure and expression of the egg-laying hormone gene family in Aplysia. J. Neurosci 5, 1872–80

    Google Scholar 

  • Mahon, A.C., Lloyd, P.E., Weiss, K.R., Kupfermann, I. and Scheller, R.H. (1985b) The small cardioactive peptides A and B of Aplysia are derived from a common precursor molecule. Proc. Natl Acad. Sci. USA 82, 3925–9

    Google Scholar 

  • Matsumoto, S., Isogai, A. and Suzuki, A. (1985) N-terminal amino acid sequence of an insect neurohormone, melanization and reddish coloration hormone (MRCH): heterogeneity and sequence homology with human insulin-like growth factor II. FEBS Lett. 189, 115–18

    Google Scholar 

  • Matsumoto, S., Isogai, A. and Suzuki, A. (1986) Isolation and amino terminal sequence of melanization and reddish coloration hormone (MRCH) from the silkworm, Bombyx mori. Insect Biochem. 16, 775–9

    Google Scholar 

  • Mayeri, E. and Rothman, B.S. (1982) Nonsynaptic peptidergic neurotransmission in the abdominal ganglion of Aplysia. In: Farner, D.S. and Lederis, K. (eds) Neurosecretion: molecules, cells, systems, pp. 305–15. Plenum, New York

    Google Scholar 

  • Mayeri, E., Brownell, P. and Branton, W.D. (1979a) Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. I. Effects on bursting pacemaker neurons. J. Neurophysiol 42, 1165–84

    Google Scholar 

  • Mayeri, E., Brownell, P. and Branton, W.D. (1979b) Multiple, prolonged actions of neuroendocrine bag cells on neurons in Aplysia. II. Effects on beating pacemaker and silent neurons. J. Neurophysiol 42, 1185–97

    Google Scholar 

  • Mordue, W. and Stone, J.V. (1977) Relative potencies of locust adipokinetic hormone and prawn red-pigment concentrating hormone in insect and crustacean systems. Gen. Comp. Endocrinol 33, 103–8

    Google Scholar 

  • Morris, H.R., Panico, M., Karplus, A., Lloyd, P.E. and Riniker, B. (1982) Elucidation by FAB-MS of the structure of a new cardioactive peptide from Aplysia. Nature (Lond.) 300, 643–5

    Google Scholar 

  • Morris, H.R., Panico, M., Etienne, T., Tippins, J., Girgis, S.I. and Maclntyre, I. (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature (Lond.) 308, 746–8

    Google Scholar 

  • Muneoka, Y. and Saitoh, H. (1986) Pharmacology of FMRF amide in Mytilus catch muscle. Comp. Biochem. Physiol 85C, 201–14

    Google Scholar 

  • Myers, C.M. and Evans, P.D. (1985) The distribution of bovine pancreatic polypeptide FMRF amide-like immunoreactivity in the ventral nervous system of the locust. J. Comp. Neurol 234, 1–16

    Google Scholar 

  • Nachman, R.J., Holman, G.M., Haddon, W.F. and Ling, N. (1986a) Leucosul-fakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science, Wash. 234, 71–3

    Google Scholar 

  • Nachman, R.J., Holman, G.M., Cook, B.J., Haddon, W.F. and Ling, N. (1986b) Leucosulfakinin — II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochem. Biophys. Res. Commun 140, 357–66

    Google Scholar 

  • Nagasawa, H., Kataoka, H., Isogai, A., Tamura, S., Suzuki, A., Ishizaki, H., Mizoguchi, A., Fujiwara, Y. and Suzuki, A. (1984) Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science, Wash. 226, 1344–45

    Google Scholar 

  • Nagasawa, H., Kamito, T., Takahashi, S., Kogai, A., Fugo, H. and Suzuki, A. (1985) Eclosion hormone of the silkworm, Bombyx mori; purification and deter-mination of the N-terminal amino acid sequence. Insect Biochem. 15, 573–8

    Google Scholar 

  • Nakanishi, S., Inoue, A., Kita, T., Nakaimra, M., Chang, A.C.Y., Cohen, S.N. and Numa, S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin- P-lipotropin precursor. Nature (Lond.) 278, 423–7

    Google Scholar 

  • Nambu, J.R., Taussig, R., Mahon, A.C. and Scheller, R.H. (1983) Gene isolation with cDNA probes from identified Aplysia neurons: neuropeptide modulators of cardiovascular physiology. Cell 35, 47–56

    Google Scholar 

  • Nawa, H., Hirose, T., Takashima, H., Inayama, S. and Nakanishi, S. (1983) Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature (Lond.) 306, 32–6

    Google Scholar 

  • Nikolics, K., Mason, A.J., Szonyi, E., Ramachandran, J. and Seebury, P.H. (1985) A prolactin-inhibiting factor within the precursor for human gonadotropin- releasing hormone. Nature (Lond.) 316, 511–17

    Google Scholar 

  • Nishizuka, Y. (1984) Turnover of inositol phospholipids and signal transduction. Science, Wash. 225, 1365–70

    Google Scholar 

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanishi, S. and Numa, S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature (Lond.) 295, 202–6

    Google Scholar 

  • Ocorr, K.A. and Byrne, J.H. (1985) Membrane responses and changes in cAMP levels in Aplysia sensory neurons produced by serotonin, tryptamine, FMRF amide and small cardioactive peptideB (SCPB). Neurosci. Lett 55, 113–18

    Google Scholar 

  • O’Shea, M. and Adams, M.E. (1981) Pentapeptide (proctolin) associated with an identified neuron. Science, Wash. 213, 567–9 O’Shea, M. and Bishop, C.A. (1982) Neuropeptide proctolin associated with an identified skeletal motoneuron. J. Neurosci 2, 1242–51

    Google Scholar 

  • O’Shea, M. and Schaffer, M. (1985) Neuropeptide function: the invertebrate connection. Ann. Rev. Neurosci. 8, 171–98 O’Shea, M., Witten, J. and Schaffer, M. (1984) Isolation and characterization of two myactive Neuropeptides: further evidence of an invertebrate peptide family. J. Neurosci 4, 521–9

    Google Scholar 

  • Painter, S.D., Morley, J.S. and Price, D.A. (1982) Structure-activity relations of the molluscan neuropeptide FMRF amide on some molluscan muscles. Life Sci. 31, 2471–8

    Google Scholar 

  • Pelletier, G., Steinbusch, H.W.M. and Verhofstad, A.A.J. (1981) Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature (Lond.) 293, 71–2

    Google Scholar 

  • Petruzzelli, I., Herrera, R., Garcia, R. and Posen, D.M. (1985) In: Feramisco, J., Ozanne, B. and Stiles, C. (eds) Growth factors and transformation: cancer cells, vol. 3, pp. 115–21. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Price, D.A., Cottrell, G.A., Doble, K.E., Greenberg, M.J., Jorenby, W., Lehman, H.K. and Riehm, J.P. (1985) A novel FMRF amide-related peptide in Helix pQDPFLRFamide. Biol. Bull. Mar. Biol. Lab. Woods Hole 169, 256–66

    Google Scholar 

  • Price, D.A. and Greenberg, M.J. (1977) Structure of a molluscan cardioexcitatory neuropeptide. Science, Wash. 197, 670–1

    Google Scholar 

  • Quackenbush, L.S. and Fingerman, M. (1985) Enzyme-linked immunosorbent assay of black pigment dispersing hormone from the fiddler crab, Uca pugilator. Gen. Comp. Endocrinol, 57, 438–44

    Google Scholar 

  • Quistad, G.B., Adams, M.E., Scarborough, R.M., Carney, R.L. and Schooley, D.A. (1984) Metabolism of proctolin, a pentapeptide neurotransmitter in insects. Life Sci. 34, 569–76

    Google Scholar 

  • Raabe, M. (1982) Insect neurohormones. Plenum Press, New York

    Google Scholar 

  • Rao, K.R., Riehm, J.P., Zahnour, C.A., Kleinholz, L.H., Tarr, G.E., Johnson, L., Norton, S., Landau, M., Semmes, O.J., Sattelberg, R.M., Jorenby, W.H. and Hintz, M.F. (1985) Characterization of a pigment dispersing hormone in eye- stalks of the fiddler crab, Uca pugilator. Proc. Natl Acad. Sci. USA 82, 5319–22

    Google Scholar 

  • Reading, C.L. (1982) Theory and methods for immunisation in culture and monoclonal antibody production. J. Immunol. Meth 53, 261–91

    Google Scholar 

  • Remy, C. and Dubois, M.P. (1981) Immunohistological evidence of methionine enkephalin-like material in the brain of the migratory locust. Cell Tiss. Res 218, 271–8

    Google Scholar 

  • Rinehart, K.L. (1982) Fast atom bombardment mass spectrometry. Science, Wash. 218, 254–60

    Google Scholar 

  • Rosenfeld, M.G., Mermod, J-J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., Vale, W.W. and Evans, R.M. (1983) Production of a novel neuro-peptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature (Lond.) 304, 129–35

    Google Scholar 

  • Rothman, B.S., Mayeri, E., Brown, R.O., Yuan, P-M. and Shively, J.E. (1983) Primary structure and neuronal effects of a-bag cell peptide, a second candidate neurotransmitter encoded by a single gene in bag cell neurons of Aplysia. Proc. Natl Acad. Sci. USA 80, 5753–7

    Google Scholar 

  • Sasek, C.A., Schueler, P.A., Herman, W.S. and Elde, R.P. (1985) An antiserum to locust adipokinetic hormone reveals a novel peptidergic system in the rat central nervous system. Brain Res. 343, 172–5

    Google Scholar 

  • Scarborough, R.M., Jamieson, G.C., Kalish, F., Kramer, S.J., McEnroe, G.A., Miller, C.A. and Schooley, D.A. (1984) Isolation and primary structure of two peptides with cardioacceleratory and hyperglycaemic activity from the corpora cardiaca of Periplaneta americana. Proc. Natl Acad. Sci. USA 81, 5575–9

    Google Scholar 

  • Schaefer, M., Picciotto, M.R., Kreimer, T., Kaldany, R-R., Taussig, R. and Scheller, R.H. (1985) Aplysia neurons express a gene encoding multiple FMRF amide Neuropeptides Cell 41, 457–67

    Google Scholar 

  • Schaffer, M.H., Noyes, B.E. and O’Shea, M. (1984) Molecule biological studies of the sequenced insect Neuropeptides. Soc. Neurosci. Abstr 10, 152

    Google Scholar 

  • Schaller, H.C. and Bodenmuller, H. (1981) Isolation and amino acid sequence of a morphogenic peptide from Hydra. Proc. Natl Acad. Sci. USA 78, 7000–4

    Google Scholar 

  • Schaller, H.C., Hoffmeister, S. and Bodenmuller, H. (1984) Hormonal control of regeneration in Hydra. In: Hoffman, J. and Porchet, M. (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones, pp. 5–9. Springer- Verlag, Berlin

    Google Scholar 

  • Scheller, R.H., Jackson, J.F., McAllister, L.B., Schwartz, J.H., Kandel, E.R. and Axel, R. (1982) A family of genes that codes for ELH, a neuropeptide eliciting a stereotyped pattern of behaviour in Aplysia. Cell 28, 707–19

    Google Scholar 

  • Scheller, R.H., Jackson, J.F., McAllister, L.B., Rothman, B.S., Mayeri, E. and Axel, R. (1983) A single gene encodes multiple Neuropeptides mediating a stereotyped behaviour. Cell 35, 7–22

    Google Scholar 

  • Scheller, R., Kaldany, R.R., Kreiner, T., Mahon, A.C., Nambu, J.R., Schaefer, M. and Taussig, R. (1984) Neuropeptides: mediators of behaviour in Aplysia. Science, Wash 225, 1300–8

    Google Scholar 

  • Schlesinger, D.H., Babirak, S.P. and Blankenship, J.E. (1981) Primary structure of an egg-releasing peptide from the atrial gland of Aplysia californca. In: Schlesinger, D.H. (ed.) Symposium on neurohypophyseal peptide hormones and other biologically active peptides, pp. 137–50. Elsevier North Holland Biomedical Press, New York

    Google Scholar 

  • Schooneveld, H., Romberg-Privee, H.M. and Veenstra, J.A. (1985) Adipokinetic hormone-immunoreactive peptide in the endocrine and central nervous system of several insect species. A comparative immunocytochemical approach. Gen. Comp. Endocrinol 57, 184–94

    Google Scholar 

  • Schooneveld, H., Tesser, G.I., Veenstra, J.A. and Romberg-Privee, H. (1983) Adipokinetic hormone and AKH-like peptide demonstrated in the corpora cardiaca and nervous system of Locusta migratoria by immunocytochemistry. Cell Tissue Res. 230, 67–76

    Google Scholar 

  • Schot, L.P.C., Boer, H.H., Swaals, D.F. and Van Noorden, S. (1981) Immunocyto-chemical demonstration of peptidergic neurons in the central nervous system of the pond snail, Lymnaea stagnalis, with antisera raised to biologically active peptides of vertebrates. Cell Tiss. Res 216, 273–91

    Google Scholar 

  • Schramm, M. and Selinger, Z. (1984) Message transmission: receptor controlled adenylate cyclase system Science, Wash. 225, 1350–6

    Google Scholar 

  • Schueler, P.A., Elde, R.P., Herman, W.S. and Mahoney, W.C. (1986) Identification and initial characterization of adipokinetic hormone-like immunoreactive peptides of rat origin. J. Neurochem 47, 133–8

    Google Scholar 

  • Schwartz, J.C. (1983) Metabolism of enkephalins and the inactivating neuro- peptidase concept. Trends Neurosci. 6, 45–8

    Google Scholar 

  • Schwarz, T.L., Lee, G.M.H., Siwicki, K.K., Standaert, D.G. and Kravitz, E.A. (1984) Proctolin in the lobster: the distribution, release and characterisation of a likely neurohormone. J. Neurosci 4, 1300–11

    Google Scholar 

  • Sedlmeier, D. and Keller, R. (1981) The mode of action of the crustacean neurosecretory hyperglycemic hormone. I. Involvement of cyclic nucleotides. Gen. Comp. Endocrinol 45, 82–90

    Google Scholar 

  • Seecoff, R.L. and Dewhurst, S. (1974) Insulin is a Drosophila hormone and acts to enhance the differentiation of embryonic Drosophila cells. Cell Diff. 3, 63–70

    Google Scholar 

  • Shymala, J.R., Nambu, J.R. and Scheller, R.H. (1986) Expression of the egg-laying hormone gene family in the head ganglia of Aplysia. Brain Res. 371, 49–57

    Google Scholar 

  • Siegert, K.J. and Mordue, W. (1986) Quantification of adipokinetic hormones I and II in the corpora cardiaca of Schistocerca gregaria and Locusta migratoria, Comp. Biochem. Physiol 84A, 279–84

    Google Scholar 

  • Siegert, K., Morgan, P. and Mordue, W. (1985) Primary structures of locust adipokinetic hormones II. Biol Chem. Hoppe-Seyler, 336, 723–7

    Google Scholar 

  • Siegert, K. and Ziegler, R. (1983) A hormone from the corpora cardiaca controls fat body glycogen phosphorylase during starvation in tobacco hornworm larvae. Nature (Lond.) 307, 526–7

    Google Scholar 

  • Singh, G.J.P. and Orchard, I. (1982) Is insecticide-induced release of insect neurohormones a secondary effect of hyperactivity of the central nervous system? Pest. Biochem. Physiol 17. 232–42

    Google Scholar 

  • Siwicki, K.K. and Kravitz, E.A. (1984) Proctolin colocalizes with several different transmitters in lobster neurons. Soc. Neurosci. Abstr 10, 152

    Google Scholar 

  • Smith, W.A., Gilbert, L.I. and Bollenbacher, W.E. (1984) The role of cyclic AMP in ecdysone synthesis. Molec. Cell Endocrinol, 37, 285–94

    Google Scholar 

  • Smith, W.A., Gilbert, L.I. and Bollenbacher, W.E. (1985) Calcium-cyclic AMP interactions in prothoracicotropic hormone stimulation of ecdysone synthesis. Molec. Cell Endocrinol 39, 71–8

    Google Scholar 

  • Smyth, D.G., Zakarian, S., Deakin, J.F.W. and Massey, D.E. (1981) p-Endorphin related peptides in the pituitary gland: isolation, identification and distribution. In: Peptides of the pars intermedia, (Ciba Foundation Symposium 81), pp, 79–96. Pitman Medical, London

    Google Scholar 

  • Snyder, S.H. (1980) Brain peptides as neurotransmitters. Science, Wash. 209, 976- 83

    Google Scholar 

  • Stangier, J., Hilbrich, C., Beyreuther, K. and Keller, R. (1986) Isolation and characterisation of a crustacean cardioactive peptide (CCAP) from pericardial organs of the shore crab, Carcinusmaenas. Bull Soc. Zool France III, 28

    Google Scholar 

  • Starratt, A.N. and Brown, B.E. (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci. 17, 1253–6

    Google Scholar 

  • Starratt, A.N. and Brown, B.E. (1979) Analogs of the insect myotropic peptide proctolin: synthesis and structure-activity studies. Biochem. Biophys. Res. Commun 90, 1125–30

    Google Scholar 

  • Starratt, A.N. and Steele, R.W. (1984) In vivo inactivation of the insect neuropeptide proctolin in Periplaneta americana. Insect Biochem. 14, 97–102

    Google Scholar 

  • Steele, R.W. and Starratt, A.N. (1985) In vitro inactivation of the insect neuropeptide proctolin in haemolymph from Periplaneta americana. Insect Biochem. 15, 511–19

    Google Scholar 

  • Stefano, G.B., Kream, R.M. and Zukin, R.S. (1980) Demonstration of stereo- specific opiate binding in the nervous tissue of the marine mollusc, Mytilus edulis. Brain Res. 181, 440–5

    Google Scholar 

  • Stefano, G.B. and Leung, M.K. (1984) Presence of met-enkephalin-Arg6-Phe7 in molluscan neural tissues. Brain Res. 298, 362–5

    Google Scholar 

  • Stefano, G.B. and Scharrer, B. (1981) High affinity binding of an enkephalin analog in the cerebral ganglion of the insect Leucophaea maderae (Blattaria) Brain Res. 225, 107–14

    Google Scholar 

  • Stefano, G.B., Scharrer, B. and Assanah, P. (1982) Demonstration, characterisation and localisation of opioid binding sites in the midgut of the insect Leucophaea maderae (Blattaria). Brain Res. 253, 205–12

    Google Scholar 

  • Stern, A.S., Lewis, R.V., Kimura, S., Rossier, J., Gerber, L.D., Brink, L., Stein, S. and Udenfriend, S. (1979) Isolation of the opioid heptapeptide Met-enkephalin (Arg6-Phe7) from bovine adrenal medullary granules and striatum. Proc. Natl Acad. Sci. USA 76, 6680–3

    Google Scholar 

  • Stone, J.V., Mordue, W., Batley, K.E. and Morris, H.R. (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature (Lond.) 263, 207–11

    Google Scholar 

  • Stone, J.V., Mordue, W., Broomfield, C.E. and Hardy, P.M. (1978) Structure- activity relationships for the lipid mobilizing action of adipokinetic hormone action of adipokinetic hormone. Synthesis and activity of a series of hormone analogues. Eur. J. Biochem 89, 195–202

    Google Scholar 

  • Sullivan, R.E. and Newcomb, R.W. (1982) Structure function analysis of an arthropod peptide hormone: proctolin and synthetic analogues compared on the cockroach hindgut receptor. Peptides 3, 337–44

    Google Scholar 

  • Taghert, P.H. and Truman, J.W. (1982) Identification of the bursicon-containing neurons in abdominal ganglia of the tobacco hornworm Manduca sexta. J. exp. Biol 98, 385–402

    Google Scholar 

  • Taghert, P.H., Tublitz, N.J., Truman, J.W. and Goodman, C.S. (1984) Monoclonal antibodies that recognise cardioactive peptides in the moth, Manduca sexta. Soc. Neurosci. Abstr 10, 152

    Google Scholar 

  • Takeda, S., Vieillemaringe, J., Geffard, M. and Remy, C. (1986) Immunohistological evidence of dopamine cells in the cephalic nervous system of the silkworm Bombyx mori. Coexistence of dopamine and a-endorphin-like substance in neurosecretory cells of the suboesophageal ganglion. Cell Tiss. Res 243, 125–8

    Google Scholar 

  • Tang, J., Yang, H.Y.T. and Costa, E. (1984) Inhibition of spontaneous and opiate- modified nociception by an endogenous neuropeptide with Phe-Met-Arg-Phe- NH2-like immunoreactivity. Proc. Natl Acad. Sci. USA 81, 5002–5

    Google Scholar 

  • Taussig, R., Kaldany, R.R. and Scheller, R.H. (1984) A cDNA close encoding Neuropeptides isolated from Aplysia neuron Lll. Proc. Natl Acad. Sci. USA 84, 4988–92

    Google Scholar 

  • Thompson, K.L. Decker, S.J. and Rosner, M.R. (1985) Identification of a novel receptor in Drosophila for both epidermal growth factor and insulin. Proc. Natl Acad. Sci. USA 82, 8443–7

    Google Scholar 

  • Thorpe, A. and Duve, H. (1984) Immunochemical applications in the study of insect Neuropeptides with special emphasis on the peptides of vertebrate type. In: Borkovec, A.B. and Kelly, T.J. (eds) Insect neurochemistry and neurophysiology, pp. 197–222. Plenum, New York

    Google Scholar 

  • Truman, J.W. (1980) Cellular aspects of eclosion hormone action on the CNS of insects. In: Sattelle, D.B., Hall, L.M. and Hildebrand, J.G. (eds) Receptors for neurotransmitters, hormones and pheromones in insects,pp. 223–32. Elsevier, North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Truman, J.W., Mumby, S.M. and Welch, S.K. (1979) Involvement of cyclic GMP in the release of stereotyped behaviour patterns in moths by peptide hormone. J. exp. Biol 84, 201–12

    Google Scholar 

  • Tublitz, N.J. and Truman, J.W. (1985) Identification of neurones containing cardioaccelerating peptides (CAPS) in the ventral nerve cord of the tobacco hawkmoth, Manduca sexta. J. exp. Biol 116, 395–410

    Google Scholar 

  • Tublitz, N.J., Taghert, P.H. and Evans, P.D. (1985) A monoclonal antibody acts as a functional blocker of cardioacceleratory peptide activity in the tobacco hawkmoth, Manduca sexta. Soc. Neurosci. Abstr 11, 326

    Google Scholar 

  • Valentino, K.L., Winter, J. and Reichard, L.F. (1985) Applications of monoclonal antibodies to neuroscience research. Ann. Rev. Neurosci 8, 199–232

    Google Scholar 

  • Vreugdenhil, E., Geraerts, W.P.M., Jackson, J.F. and Joose, J. (1985) The molecular basis of the neuroendocrine control of egg-laying behaviour in Lymnaea. Peptides (Fayetteville, NY) 6 (Suppl. 3), 465–70

    Google Scholar 

  • Walsh, K.A., Ericsson, L.H., Parmelee, D.C. and Titani, K. (1981) Advances in protein sequencing. Ann. Rev. Biochem 50, 261–84

    Google Scholar 

  • Watson, W.H., Angustine, G.J. and Benson, J.A. (1983) Proctolin and an endogenous proctolin-like peptide enhance the contractivity of the Limulus heart, J. exp. Biol 103, 55–73

    Google Scholar 

  • White, J.D., Stewart, K.D., Krause, J.E. and McKelvy, J.F. (1985) Biochemistry of peptide-secreting neurons. Physiol Rev. 65, 553–606

    Google Scholar 

  • Williams, C.M. (1967) The present status of the brain hormone. In: Beament, J.W.L. and Treherne, J.E. (eds) Insects and physiology, pp. 133–9, Oliver & Boyd, Edinburgh

    Google Scholar 

  • Witten, J., Schaffer, M.A., O’Shea, M., Cook, J.C., Hemling, M.E. and Rinehart, K.L. (1984) Structure of two cockroach Neuropeptides assigned by fast atom bombardment mass spectrometry. Biochem. Biophys. Res. Commun. 124, 350- 358

    Google Scholar 

  • Witten, J.L. and O’Shea, M. (1985) Peptidergic innervation of insect skeletal muscle: immunochemical observations. J. Comp. Neurol 242, 93–101

    Google Scholar 

  • Yang, H.Y.T., Fratta, W., Majane, E.A. and Costa, E. (1985) Isolation, sequencing, synthesis, and pharmacological characterisation of two brain Neuropeptides that modulate the action of morphine. Proc. Natl Acad. Sci. USA 82, 7757–61

    Google Scholar 

  • Ziegler, R., Eckart, K., Schwarz, H. and Keller, R. (1985) Amino acid sequence of Manduca sexta adipokinetic hormone elucidated by combined fast atom bombardment (FAB)/tandem mass spectrometry. Biochem. Biophys. Res. Commun 133, 337–42

    Google Scholar 

  • Zukin, R.S. and Zukin, S.R. (1984) The case for multiple opiate receptors. Trends Neurosci. 7, 160–4

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 G.G. Lunt and R.W. Olsen

About this chapter

Cite this chapter

Platt, N., Reynolds, S.E. (1988). Invertebrate Neuropeptides. In: Lunt, G.G., Olsen, R.W. (eds) Comparative Invertebrate Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9804-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9804-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9806-0

  • Online ISBN: 978-1-4615-9804-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics