Skip to main content

Abstract

γ-Aminobutyric acid (GABA) was discovered at the beginning of the century (Ackerman and Kutscher, 1910), and, shortly after it was first detected in mammalian brain in 1950 (Awapara et al., 1950; Roberts and Frankel, 1950; Udenfriend, 1950), an extract of mammalian brain and spinal cord was shown to contain a factor, ’Factor P, which inhibited the stretch receptor neurone (a single sensory cell with its dendrites entwined in a fine muscle bundle) of the crayfish (Florey, 1954). Through fractional crystallisation of bovine brain Factor I, GABA was shown to be the most active component in terms of its inhibitory activity on the stretch receptor neurone (Bazemore et al., 1957). Following some controversy over the role of GABA as a neurotransmitter, Kravitz and colleagues demonstrated GABA to be present in lobster inhibitory neurones, where it is synthesised, accumulated and released (Kravitz, 1967), and this work will be described later in this chapter. By the early 1970s it was thought that GABA might be the universal transmitter of junctional neuromuscular inhibition in all invertebrate phyla from nematodes to arthropods (though not molluscs), and it was also thought to be involved in the CNS of crustaceans, insects and possibly molluscs (see Gerschenfeld, 1973; Pichon, 1974; Callec, 1974). However, the evidence for this was virtually all electrophysiological, and despite the early studies on GABA involving invertebrate tissues, the bulk of the biochemistry of GABAergic neurotransmission has been elucidated in mammalian tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abalis, I.M. and Eldefrawi, A.T. (1986) [3H]Muscimol binding to a putative GABA receptor in honeybee brain and its interaction with avemectin Bla. Pest. Biochem. Physiol 25, 279–87

    Google Scholar 

  • Abalis, I.M., Eldefrawi, M.E. and Eldefrawi, A.T. (1983) Biochemical identification of putative GABA/benzodiazepine receptors in housefly thorax muscles. Pest. Biochem. Physiol. 20, 39–48

    Google Scholar 

  • Abalis, I.M., Eldefrawi, M.E. and Eldefrawi, A.T. (1985a) Binding of GABA receptor channel drugs to a putative voltage-dependent Cl- channel in torpedo electric organ. Biochem. Pharmacol. 34, 2579–82

    Google Scholar 

  • Abalis, I.M., Eldefrawi, M.E. and Eldefrawi, A.T. (1985b) High affinity stereo- specific binding of cyclodiene insecticides and γ-hexachlorocyclohexane to γ- aminobutyric acid receptors of rat brain. Pest. Biochem. Pharmacol 24, 95–102

    Google Scholar 

  • Abalis, I.M., Eldefrawi, A.T. and Eldefrawi, M.E. (1987) Actions of AVMBla on GABAa receptor and chloride channels in rat brain. Biochem. Toxicol in press Ackerman, D. and Kutscher, F. (1910) Uber aporrhegmen. Z. Physiol Chem. 69, 1265–72

    Google Scholar 

  • Ackerman, D., and Kutscher, F.(1910) Uber aporrhegmen. Z. Physiol. Chem. 69, 1265–72

    Google Scholar 

  • Aprison, M.H., McBride, W.J. and Freeman, A.R. (1973) The distribution of several amino acids in specific ganglia and nerve bundles of the lobster. J. Neuro-chem. 21, 87–95

    Google Scholar 

  • Awapara, J., Landua, A.J., Fuerst, R. and Seale, B. (1950) Free gamma-amino-butyric acid in brain. J. Biol Chem. 187, 35–9

    Google Scholar 

  • Battelle, B.A., Kravitz, E.A, and Stieve, H. (1979) Neurotransmitter synthesis in Limulus ventral nerve photoreceptors. Experientia 35 77–8

    Google Scholar 

  • Baxter, C.F. and Torralba, G.F. (1975) γ-Aminobutyric acid glutamate decarboxylase (L-glutamate 1-carboxy-lyase, E.C.4.1.1.15) in the nervous system of the cockroach, Periplaneta americana, 1. Regional distribution and properties of the enzyme. Brain Res. 84, 383–97

    Google Scholar 

  • Bazemore, A.K., Eliott, A.C. and Florey, E. (1957) Isolation of factor I. J. Neuro- chem. 1, 334–9

    Google Scholar 

  • Beadle, D.J., Benson, J.A., Lees, G. and Neuman, R. (1985) Flunitrazepam and pentobarbital modulate GABA responses of insect neuronal somata. J. Physiol 2731, 273 p

    Google Scholar 

  • Beadle, D.J. and Lees, G. (1986) Insect neuronal cultures — a new tool in insect Neuropharmacology. In: Ford, M.G., Lunt, G.G., Reay, R.C. and Usherwood, P.N.R. (eds) Neuropharmacology and pesticide action, pp. 425–44. Ellis Horwood, Chichester

    Google Scholar 

  • Blinderman, J-M., Maitre, M., Ossola, L. and Mandel, P. (1978) Purification and some properties of L-glutamate decarboxylase from human brain. Eur. J. Biochem. 86, 143–52

    Google Scholar 

  • Bolger, G.T., Weissman, B.A., Lueddens, H., Basile, A.S., Mantione, C.R., Barrett, I.E., Witkin, J.M., Paul, S.M. and Skolnick, P. (1986) Late evolutionary appearance of peripheral-type binding sites for benzodiazepines. Brain Res. 338, 366–70

    Google Scholar 

  • Bowery, N., Price, G.W., Hudson, A.L., Hill, D.R., Wilkin, G.P. and Turnbull, M.J. (1984) GABA receptor multiplicity — visualization of different receptor types in the mammalian CNS. Neuropharmacol 23 219–31

    Google Scholar 

  • Bradford, H.F. (1986) Chemical neurobiology. W.H. Freeman, New York, 229–42

    Google Scholar 

  • Bradford, H.F., Chain, E.B., Cory, H.T. and Rose, S.P.R. (1969) Glucose and amino acid metabolism in some invertebrate nervous systems. J. Neurochem. 16, 969–78

    Google Scholar 

  • Braestrup, C. and Nielsen, M. (1983) Benzodiazepine receptors. In: Iversen, L.L., Iversen, S.D. and Snyder, S.H. (eds) Handbook of pharmacology, vol. 17, pp. 285–384, Plenum, New York

    Google Scholar 

  • Breer, H. and Heilgenberg, H. (1986) Neurochemistry of GABAergic activities in the central nervous system of Locusta migratoria. J. Comp. Physiol. A 157, 343- 54

    Google Scholar 

  • Breer, H. and Jeserich, G. (1980) A microscale flotation technique for the isolation of synaptosomes from nervous tissue of Locusta migratoria. Insect Biochem. 10, 457–63

    Google Scholar 

  • Calcott, P.H. and Fatig, R.O. (1984) Avermectin modulation of GABA binding to membranes of rat brain, brine shrimp and a fungus, Mucor miehei. J. Antibiot. 37, 253–9

    Google Scholar 

  • Callec, J.J. (1974) Synaptic transmission in the central nervous system of insects. In: Treherne, J.E. (ed.) Insect neurobiology, pp. 119–78. Elsevier North-Holland, Amsterdam

    Google Scholar 

  • Chalmers, A.E., Miller, T.A. and Olsen, R.W. (1987) The action of avermectin on crayfish nerve and muscle. Eur. J. Pharmacol, in press

    Google Scholar 

  • Chen, R.S. and Widner, B. (1968) Content and synthesis of GABA in the larval brain of Drosophila melanogaster. Experientia, 24, 516–17

    Google Scholar 

  • Chude, O., Roberts, E. and Wu J-Y. (1979) Partial purification of Drosophila glutamate decarboxylase. J. Neurochem. 32, 1409–15

    Google Scholar 

  • Cline, H.T., Nusbaum, M.P. and Kristan, W.B. (1985) Identified GABAergic inhibitory motor neurones in the leech central nervous system take up GABA. Brain Res. 384, 359–62

    Google Scholar 

  • Cohen, E. and Casida, J.E. (1986) Effects of insecticides and GABAergic agents on a housefly [35S]t-butylbicyclophosphorothionate binding site. Pest. Biochem. Physiol. 25, 63–72

    Google Scholar 

  • Cory, H.T. and Rose, S.P.R. (1969) Glucose and amino acid metabolism in octopus optic and vertical lobes in vitro. J. Neurochem. 16, 979–88

    Google Scholar 

  • Craelius, W. and Fricke, R.A. (1981) Release of [3H]gamma-aminobutyric acid (GABA) by inhibitory neurones of the crayfish. J. Neurobiol. 12, 249–58

    Google Scholar 

  • De Belleroche, J.S. and Bradford, H.F. (1977) On the site of origin of transmitter amino acids release by depolarization of nerve terminals in vitro. J. Neurochem. 29, 335–43

    Google Scholar 

  • De Feudis, F.V. (1979) Binding and ionophoretic studies on centrally active amino acids — a search for physiological receptors. Int. Rev. Neurobiol. 21, 155–77

    Google Scholar 

  • Deisz, R.A., Dose, M. and Lux, H.D. (1984) The time course of GABA action on the crayfish stretch receptor: evidence for a saturable GABA uptake. Neurosci. Lett. 47, 245–50

    Google Scholar 

  • De Robertis, E. and Fiszer de Plazas, M. (1974) Isolation of hydrophobic proteins binding neurotransmitter amino acids: 7-aminobutyric acid receptor of the shrimp muscle. J. Neurochem. 23, 1121–5

    Google Scholar 

  • Drexler, G. and Seighart, W. (1984a) Properties of a high affinity binding site for [3H]avermectinBla. Eur. J. Pharmacol. 99, 269–77

    Google Scholar 

  • Drexler, G. and Seighart, W. (1984b) [35S]t-butylbicyclophosphorothionate and avermectin bind to different sites associated with the gamma-aminobutyric acid- benzodiazepine receptor complex. Neurosci. Lett. 50, 273–7

    Google Scholar 

  • Drexler, G. and Seighart, W. (1984c) Evidence for association of a high affinity avermectin binding site with the benzodiazepine receptor. Eur. J. Pharmacol. 101, 201–7

    Google Scholar 

  • Duce, I.R. and Scott, R.H. (1985) Actions of avermectinBIa on insect muscle. Br. J. Pharmacol. 85, 395–401

    Google Scholar 

  • Eccles, J.C. and Jaeger, J.C. (1958) The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end organs. Proc. Roy. Soc. (Lond.) 148, 38–56

    Google Scholar 

  • Edwardson, J.M., Phillips, N.I., Kirby, N. and Fowler, L.J. (1985) A monoclonal antibody to rabbit brain GABA transaminase. J. Neurochem 44, 1679–84

    Google Scholar 

  • Enna, S.J. and Snyder, S.H. (1975) Properties of GABA receptor binding in rat brain synaptic membrane fractions. Brain Res. 100, 81–97

    Google Scholar 

  • Florey, E. (1954) An inhibitory and excitatory factor from mammalian brain and their action on a single sensory neurone. Arch. Int. Physiol. 62, 33–53

    Google Scholar 

  • Fox, P.M. and Larsen, J.R. (1972) Glutamic acid decarboxylase and the GABA shunt in the supraoesophageal ganglion of the honeybee, Apis mellifera. J. Insect Physiol. 18, 439–57

    Google Scholar 

  • Fritz, L.C., Wang, C.C. and Gorio, A. (1979) AvermectinBla irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc. Natl Acad. Sci. USA 76, 2062–6

    Google Scholar 

  • Frontali, N. (1961) Activity of glutamic acid decarboxylase in insect nervous tissue. Nature (Lond.) 191 178–9

    Google Scholar 

  • Frontali, N. (1964) Brain glutamic acid decarboxylase and synthesis of γ-amino- butyric acid in vertebrate and invertebrate species. In: Richter, D. (ed.) Comparative neurochemistry, pp. 185–92. Pergamon Press, Oxford

    Google Scholar 

  • Frontali, N. and Pierantoni, R. (1973) Autoradiographic localisation of [3H]GABA in the cockroach brain. Comp. Biochem. Physiol 44A, 1369–72

    Google Scholar 

  • Gerschenfeld, H.M. (1973) Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Phys. Rev 5 J 1–119

    Google Scholar 

  • Gordon, D., Zlotkin, E. and Kanner, B. (1982) Functional membrane vesicles from the nervous system of insects, 1. Na+ and Cl- dependent GABA transport. Biochim. Biophys. Acta 688, 229–36

    Google Scholar 

  • Greenlee, D.V., Van Ness, P.C, and Olsen, R.W. (1978) Endogenous inhibitor of GABA binding in mammalian brain. Life Sci. 22, 1653–62

    Google Scholar 

  • Griffiths, R., Larsson, O.M., Allen, I.C. and Schousboe, A. (1987) Reassessment of P-alanine as a selective inhibitor of GABA uptake by glia. Biochem. Soc. Trans. in press.

    Google Scholar 

  • Haber, B., Kuriyama, K. and Roberts, E. (1969) Decarboxylation of glutamate by tissues other than brain, non-identity with CNS GAD. Fed. Proc. 28, 577

    Google Scholar 

  • Haber, B., Kuriyama, K. and Roberts, E. (1970a) L-Glutamic acid decarboxylase: a new type from glial cells and human brain gliomas. Science 168, 598–9

    Google Scholar 

  • Haber, B., Kuriyama, K. and Roberts, E. (1970b) An anion stimulated L-glutamic acid decarboxylase in non-neuronal tissues. Biochem. Pharmacol. 19, 1119–36

    Google Scholar 

  • Haefely, W. (1984) Benzodiazepine interactions with GABA receptors. Neurosci. Lett. 47, 201–6

    Google Scholar 

  • Hall, Z.W. and Kravitz, E.A. (1967a) The metabolism of γ-aminobutyrie acid (GABA) in the lobster nervous system. I. GABA-glutamate transaminase. J. Neurochem. 14, 45–54

    Google Scholar 

  • Hall, Z.W. and Kravitz, E.A. (1967b) The metabolism of γ-aminobutyric acid (GABA) in the lobster nervous system. II. Succinic semialdehyde dehydrogenase. J. Neurochem. 14, 55–61

    Google Scholar 

  • Haring, P., Stahli, C., Schoch, P., Takacs, B., Staehelin, T. and Mohler, H. (1985) Monoclonal antibodies reveal structural homogeneity of γ-aminobutyric acid/ benzodiazepine receptors in different brain regions. Proc. Natl Acad. Sci. USA 82, 4837–41

    Google Scholar 

  • Haycock, J.W., Levy, W.B., Denner, L.A. and Cotman, C.W. (1978) Effects of elevated [K+] on the release of neurotransmitters from cortical synaptosomes: efflux or secretion? J. Neurochem. 30, 1113–25

    Google Scholar 

  • Hebebrand, J., Friedl, W., Lentes, K-L. and Propping, P. (1986) Qualitative variations of photolabelled benzodiazepine receptors in different species. Neurochem. Int. 7, 267–71

    Google Scholar 

  • Heinemaki, A.A., Malila, S.I., Tolonen, K.M., Valkonen, K.H. and Piha, R.S. (1983) Resolution and purification of taurine- and GABA-synthesising decarboxylases from calf brain. Neurochem. Res. 8, 207–18

    Google Scholar 

  • Hill, D.R., Bowery, N.G. and Hudson, A.L. (1984) Inhibition of GABAb binding by guanyl nucleotides. J. Neurochem. 42, 632–57

    Google Scholar 

  • Horwitz, I.S. and Orkand, R.K. (1979) GABA inactivation at the crayfish neuromuscular junction. J. Neurobiol. 11, 447–58

    Google Scholar 

  • Hue, B., Gabriel, A. and Le Patezour, A. (1982) Localization of [3H]GABA accumulation in the sixth abdominal ganglion of the cockroach, Periplaneta americana. J. Insect Physiol. 28, 753–9

    Google Scholar 

  • Huggins, A.K., Rick, J.T. and Kerkut, G.A. (1967) A comparative study of the intermediate metabolism of L-glutamate in muscle and nerve tissue. Comp. Biochem. Physiol. 21, 23–30

    Google Scholar 

  • Iversen, L.L. and Bloom, F.E. (1972) Studies on the uptake of [3H]GABA and [3H]glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain. Res. 41, 131–43

    Google Scholar 

  • Iversen, L.L. and Kravitz, E.A. (1966) Uptake of γ-aminobutyric acid (GABA) in a lobster nerve-muscle preparation. Fed. Proc. 25, 714

    Google Scholar 

  • Iversen, L.L. and Kravitz, E.A. (1968) The metabolism of γ-aminobutyric acid (GABA) in the lobster nervous system: uptake of GABA in nerve-muscle preparations. J. Neurochem. 15, 609–20

    Google Scholar 

  • Iversen, L.L. and Neil, M.J. (1968) The uptake of [3H]GABA by slices of rat cerebral cortex. J. Neurochem. 15, 1141–9

    Google Scholar 

  • John, R.A. and Fowler, L.J. (1976) Kinetic and spatial properties of rabbit brain 4-aminobutyrate aminotransferase. Biochem. J. 155, 645–51

    Google Scholar 

  • Kass, I.S., Wang, C.C., Walrond, J.P. and Stretton, A.O.W. (1980) AvermectinBla, a paralysing antihelminthic that affects interaeurones and motorneurones in Ascaris. Proc. Natl. Acad. Sci. USA 77, 6211–15

    Google Scholar 

  • Kirkness, E.F. and Turner, A.J. (1986) The γ-aminobutyrate/benzodiazepine receptor from pig brain. Biochem. J. 233, 265–70

    Google Scholar 

  • Kravitz, E.A. (1967) Acetylcholine, gamma-aminobutyric acid and glutamic acid: physiological and chemical studies related to their role as neurotransmitter agents. In: Quarton, G.C., Melnechuk, T. and Schmitt, F.O. (eds) The neuro-sciences: a study program, pp. 433–44. Rockefeller University Press, New York

    Google Scholar 

  • Kravitz, E.A., Iversen, L.L., Otsuka, M. and Hall, Z.W. (1968) Gamma-aminobutyric acid in the lobster nervous system: release from inhibitory nerves and uptake into nerve-muscle preparations. In: von Euler, C., Skoglund, S. and Soderberg, U. (eds) Structure and function of inhibitory neuronal mechanisms, pp. 371–6. Pergamon Press, Oxford

    Google Scholar 

  • Kravitz, E.S., Molinoff, P.B. and Hall, Z.W. (1965) A comparison of the enzymes and substrates of gamma-aminobutyric acid metabolism in lobster excitatory and inhibitory axons. Proc. Natl Acad. Sci. USA 54, 778–82

    Google Scholar 

  • Kravitz, E.A., Potter, D.D. and Van Gelder, N.M. (1962) Gamma-aminobutyric acid and other blocking substances extracted from crab muscle. Nature (Lond.) 194, 382–3

    Google Scholar 

  • Krogsgaard-Larsen, P., Hjeds, H., Curtis, D.R., Lodge, D. and Johnstone, G.A.R. (1979) Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J. Neurochem. 32, 1717–24

    Google Scholar 

  • Kuriyama, K., Weinstein, H. and Roberts, E. (1969) Uptake of GABA by mitochondrial and synaptosomal membrane fractions from mouse brain. Brain Res. 16, 479–92

    Google Scholar 

  • Lees, G. and Beadle, D.J. (1986) Dihydroavermectin B,: actions on cultured neurones from the insect central nervous system. Brain Res. 366, 369–72

    Google Scholar 

  • Lees, G., Neuman, R., Beadle, D.J. and Benson, J.A. (1985) Flunitrazepam enhances GABA- and muscimol-induced responses in freshly dissociated locust neuronal somata. Pest. Sci. 16, 534

    Google Scholar 

  • Lummis, S.C.R. and Sattelle, D.B. (1985a) Insect central nervous system γ-amino- butyric acid. Neurosci. Lett. 60, 13–18

    Google Scholar 

  • Lummis, S.C.R. and Sattelle, D.B. (1985b) GABA and benzodiazepine binding sites in insect CNS. Pest. Sci. 16, 695–7

    Google Scholar 

  • Lummis, S.C.R. and Sattelle, D.B. (1987) Binding sites for [3H]GABA, [3H]fluni-trazepam and [3H]TBPS in insect CNS. Neurochem. Int. 9, 287–93

    Google Scholar 

  • Lunt, G.G., Robinson, T.N., Miller, T., Knowles, W.P. and Olsen, R.W. (1985) The identification of GABA receptor binding sites in insect ganglia. Neurochem. Int. 7, 751–4

    Google Scholar 

  • McAdoo, D.J. and Coggeshall, R.E. (1976) Gas chromatographic-mass spectro- photometric analysis of biogenic amines in identified neurones and tissues of Hirudo medicinalis. J. Neurochem. 26, 163–7

    Google Scholar 

  • Martin, D.L. and Smith III, A.A. (1972) Ions and the transport of GABA by synaptosomes. J. Neurochem. 19, 841–55

    Google Scholar 

  • Matsumura, F. and Ghiasuddin, S.M. (1983) Evidence for similarities between cyclodiene type insecticides and picrotoxin in their action mechanisms. J. Environ. Sci. Health B18, 1–14

    Google Scholar 

  • Maxwell, G.D., Tait, J.F. and Hildebrand, J.G. (1978) Regional synthesis of neurotransmitter candidates in the CNS of the moth, Manduca sexta. Comp. Biochem. Physiol. 61C, 109–19

    Google Scholar 

  • Meiners, B.M., Kehoe, P., Shaner, D.M. and Olsen, R.W. (1979) GABA receptor binding and uptake in membrane fractions of crayfish muscle. J. Neurochem. 32, 979–90

    Google Scholar 

  • Mellin, T.N., Busch, R.D. and Wang, C.C. (1983) Postsynaptic inhibition of invertebrate neuromuscular transmission by avermectinBla. Neuropharmacology 22, 89–96

    Google Scholar 

  • Meyer, E.P., Matute, C., Streit, P. and Nassel, D.R. (1986) Insect optic lobe neurones identifiable with monoclonal antibodies to GABA. Histochemistry 84, 207–16

    Google Scholar 

  • Mohler, H., Battersby, M.K. and Richards, J.G. (1980) Benzodiazepine receptor protein identified and visualized in brain tissue by photoaffinity labelling. Proc. Natl Acad. Sci. USA 77, 1666–70

    Google Scholar 

  • Molinoff, P.B. and Kravitz, E.A. (1968) The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system — glutamic decarboxylase. J. Neurochem. 15, 391–409

    Google Scholar 

  • Nielsen, M., Braestrup, C. and Squires, R.F. (1978) Evidence for a late evolutionary appearance of brain-specific benzodiazepine receptors: an investigation of 18 vertebrate and 5 invertebrate species. Brain Res. 141, 342–6

    Google Scholar 

  • Nistri, A. and Constanti, A. (1979) Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates. Proc. Neurobiol. 13, 117–235

    Google Scholar 

  • Olsen, R.W. (1981) GABA-benzodiazepine-barbiturate receptor interactions. J. Neurochem. 37, 1–13

    Google Scholar 

  • Olsen, R.W. (1982) Drug interactions at the GABA-receptor-ionophore complex. Ann. Rev. Pharmacol. Toxicol. 22, 245–77

    Google Scholar 

  • Olsen, R.W., Fischer, J.B., King, R.G., Ransom, J.Y. and Stauber, G.B. (1984) Purification of the GABA/benzodiazepine/barbiturate receptor complex. Neuropharmacol. 23, 853–4

    Google Scholar 

  • Olsen, R.W., Lee, J.M. and Ban, M. (1975) Binding of γ-aminobutyric acid to crayfish muscle and its relationship to receptor sites. Mol. Pharmacol 11, 566–77

    Google Scholar 

  • Olsen, R.W. and Snowman, A.M. (1985) AvermectinBla modulation of γ-amino-butyric acid benzodiazepine receptor binding in mammalian brain. J. Neurochem. 44, 1074–82

    Google Scholar 

  • Osborne, N.N., Briel, G. and Neuhoff, V. (1972) Distribution of GABA and other amino acids in different tissues of the gastropod mollusc, Helix pomatia, including in vitro experiments with I4C-glucose and,4C-glutamic acid. Int. J. Neurosci. 1, 265–72

    Google Scholar 

  • Otsuka, M.E., Kravitz, E.A. and Potter, D.D. (1967) Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-amino- butyrate and glutamate. J. Neurophysiol. 30, 725–52

    Google Scholar 

  • Paul, S.M., Skolnick, P. and Zats, M. (1980) Avermectin Bla: an irreversible activator of the GABA-benzodiazepine-chloride ionophore receptor complex. Biochem. Biophys. Res. Comm. 96, 632–8

    Google Scholar 

  • Pichon, Y. (1974) The pharmacology of the insect nervous system. In: Rockstein, M. (ed.) The physiology of insects, pp. 102–74. Academic Press, New York

    Google Scholar 

  • Pong, S.S., De Haven, R. and Wang, C.C. (1981) Stimulation of benzodiazepine binding to rat brain membranes and solubilized receptor complex by avermectin Bla and 4-aminobutyric acid. Biochim. Biophys. Acta 646, 143–50

    Google Scholar 

  • Pong, S.S., De Haven, R. and Wang, C.C. (1982) A comparative study of avermectin Bla and other modulators of the 4-aminobutyric acid receptor chloride ion channel complex. J. Neurosci. 2, 966–71

    Google Scholar 

  • Pong, S.S. and Wang, C.C. (1982) Avermectin Bla modulation of 4-aminobutyric acid receptors in rat brain. J. Neurochem. 38, 375–9

    Google Scholar 

  • Pong, S.S., Wang, C.C. And Fritz, L.C. (1980) Studies on the mechanism of action of avermectin Bla: stimulation of release of 4-aminobutyric acid from brain synaptosomes. J. Neurochem. 34, 351–8

    Google Scholar 

  • Potter, D.D. (1968) The chemistry of inhibition in crustaceans with special reference to gamma-aminobutyric acid. In: von Euler, C, Skoglund, S. and Soderberg, U. (eds) Structure and function of inhibitory neuronal mechanisms, pp. 359–70. Pergamon Press, Oxford

    Google Scholar 

  • Ray, J.W. (1964) The free amino acid pool of the cockroach (Periplaneta americana) central nervous system and the effects of insecticides. J. Insect Physiol. 10, 587–97

    Google Scholar 

  • Roberts, E. (1964) Comparative aspects of the distribution of ninhydrin-reactive constituents in nervous tissue. In: Richter, D. (ed.) Comparative neuro- chemistry, pp. 401–8. Pergamon Press, Oxford

    Google Scholar 

  • Roberts, E. and Frankel, S. (1950) γ-Aminobutyric acid in the brain; its formation from glutamic acid. J. Biol. Chem. 187, 55–63

    Google Scholar 

  • Robinson, T.N. (1986) PhD Thesis, University of Bath

    Google Scholar 

  • Robinson, T.N. and Lunt, G.G. (1986) A rapid technique for the production of a locust synaptosomal preparation. Proc. 17th FEBS Meeting biol. Chem Hoppe Seiler. 367, suppl. 298

    Google Scholar 

  • Robinson, T.N., MacAllan, D., Lunt, G.G. and Battersby, M. (1986) The GABA receptor complex of insect CNS: characterization of a benzodiazepine binding site. J. Neurochem. 47, 1955–62

    Google Scholar 

  • Sargent, P.B. (1977) Synthesis of acetylcholine by excitatory motorneurones of the leech. J. Neurochem. 40, 453–60

    Google Scholar 

  • Sehoch, P., Richards, J.G., Haring, P., Takacs, B., Stahli, C., Staehelin, T., Haefely, W. and Mohler, H. (1985) Co-localization of GABAa receptors and benzodiazepine receptors in the brain shown by monoclonal antibodies. Nature (Lond.) 314, 168–71

    Google Scholar 

  • Schousboe, A., Wu, J-Y. and Roberts, E. (1973) Purification and characterization of 4-aminobutyrate–2-ketoglutarate transaminase from the mouse brain. Biochemistry 12, 2868–73

    Google Scholar 

  • Shepherd, D. and Tyrer, N.M. (1985) Inhibition of GABA uptake potentiates the effects of exogenous GABA on locust skeletal muscle. Comp. Biochem. Physiol. 82C, 315–21

    Google Scholar 

  • Sigel, E. and Barnard, E.A. (1984) A GABA/benzodiazepine receptor complex from bovine cerebral cortex. J. Biol. Chem. 259, 7219–23

    Google Scholar 

  • Sigel, E., Mamalaki, C. and Barnard, E.A. (1985) Reconstitution of the amino- butyric acid-benzodiazepine receptor complex from bovine cerebral cortex into phospholipid vesicles. Neurosci. Lett. 61, 165

    Google Scholar 

  • Sigel, E., Stephenson, F.A., Mamalaki, C. and Barnard, E.A. (1983) GABA/ benzodiazepine receptor complex of bovine cerebral cortex-purification and partial characterization. J. Biol. Chem. 258 6965–71

    Google Scholar 

  • Simmonds, M.A. (1983) Multiple GABA receptors and associated regulatory sites. Tins 6 279–81

    Google Scholar 

  • Stapleton, A.G. (1986) Studies on L-glutamic acid decarboxylase from locust brain. Ph.D. Thesis, UMIST, England

    Google Scholar 

  • Stephenson, F.A., Casalotti, S.O., Mamalaki, C. and Barnard, E.A. (1986) Antibodies recognizing the GABAA/benzodiazepine receptor including its regulatory sites. J. Neurochem. 46, 854–61

    Google Scholar 

  • Su, Y.Y.T., Wu, J-Y. and Lam, D.M.K. (1979) Purification of L-glutamic acid decarboxylase from catfish brain. J. Neurochem. 33, 169–79

    Google Scholar 

  • Su, Y.Y.T., Wu, J-Y. and Lam, D.M.K. (1983) Species specificities of L-glutamic decarboxylase: immunochemical comparison. Neurochem. Int. 5, 587–92

    Google Scholar 

  • Sugden, P.H. and Newsholme, E.A. (1977) Activities of ChAT, AChE, GAD, GABA-T and carnitine acetyl transferase in nervous tissue from some vertebrates and invertebrates. Comp. Biochem. Physiol. 56C, 89–94

    Google Scholar 

  • Supavilai, P. and Karobath, M. (1981) In vitro modulation by avermectin Bla of the GABA/benzodiazepine receptor complex of rat cerebellum. J. Neurochem. 36, 798–803

    Google Scholar 

  • Susz, J.P., Haber, B. and Roberts, E. (1966) Purification and some properties of mouse brain L-glutamic acid decarboxylase. Biochemistry 5, 2870–7

    Google Scholar 

  • Szamraj, O.I., Miller, T. and Olsen, R.W. (1986) Cage convulsant [35S]TBPS binding to GABA receptor-chloride channel complex in invertebrates. Soc. Neurosci. 12, 656

    Google Scholar 

  • Tallan, H.H. (1962) A survey of amino acids and related compounds. In: J.T. Holden (ed.) Nervous tissue, amino acid pool, pp. 156–84. Elsevier, Amsterdam and London

    Google Scholar 

  • Tallman, J.F. and Gallager, D.W. (1985) The GABA-ergic system: a locus of benzodiazepine action. Ann. Rev. Neurosci. 8, 21–44

    Google Scholar 

  • Tanaka, K. and Matsumura, F. (1985) Action of avermectin Bla on the leg muscles and the nervous system of the American cockroach. Pest. Biochem. Physiol. 29, 124–35

    Google Scholar 

  • Tanaka, K., Scott, J.G. and Matsumura, F. (1984) Picrotoxin receptor in the central nervous system of the American cockroach: its role in the action of cyclodiene insecticides. Pest. Biochem. Physiol. 22, 117–27

    Google Scholar 

  • Tapia, R. (1983) Regulation of GAD activity. In: Hertz, L., Kramme, E., McGeer, E.G. and Schousboe, A. (eds) Glutamine, glutamate and GABA in the central nervous system, p. 113. Alan Liss, New York

    Google Scholar 

  • Thomas, J.W. and Tallman, J.F. (1981) Characterization of photoaffinity labelling of benzodiazepine binding sites. J. Biol. Chem. 256, 9838–42

    Google Scholar 

  • Tsukada, Y., Uemura, K., Hirano, S. and Nagata, Y. (1964) Distribution of, amino acids in the brain of different species. In: Richter, D. (ed) Comparative neuro-chemistry, pp. 179–83. Pergamon Press, Oxford

    Google Scholar 

  • Udenfriend, S. (1950) Identification of γ-aminobutyric acid in brain by the isotope derivative method. J. Biol. Chem. 187, 33–59

    Google Scholar 

  • Van Marie, J., Piek, T., Lammerste, Th., Lind, A. and Van Weeren-Kramer, J. (1985) Selectivity of the uptake of glutamate and GABA into two morphologically distinct insect neuromuscular synapses. Brain Res. 348, 107–11

    Google Scholar 

  • Walker, R.J., Azanza, G.A. and Woodruff, G.N. (1975) The action of γ-aminobutyric acid (GABA) and related compounds on two identifiable neurones in the brain of the snail, Helix aspersa. Comp. Biochem. Physiol. 50C, 147–54

    Google Scholar 

  • Watts, S.D.M. and Atkins, A.M. (1984) Kinetics of 4-amino-2-oxoglutarate aminotransferase from Nippostrongylus brasiliensis. Mol. Biochem. Parasitol. 12, 207- 16

    Google Scholar 

  • White, H.L. (1981) Glutamate as a precursor of GABA in rat brain and peripheral tissue. Mol. Cell. Pharmacol. 39, 253

    Google Scholar 

  • Whitton, P.S., Nicholson, R.A. and Strang, R.H.C. (1986) Metabolism of taurine by insect synaptosomes. Biochem. Soc. Trans. 14, 609

    Google Scholar 

  • Williams, M. and Risley, E.A. (1979) Characterization of the binding of [3H] muscimol, a potent γ-aminobutyric acid agonist, to rat brain synaptosomal membranes using a filtration assay. J. Neurochem. 32, 713–18

    Google Scholar 

  • Williams, M. and Risley, E.A. (1982) Interaction of avermectins with [3H]- carboline–3-carboxylate ethyl ester and [3H] diazepam binding sites in rat brain cortical membranes. Eur. J. Pharmacol. 77, 307–12

    Google Scholar 

  • Williams, M. and Risley, E.A. (1984) Avermectin interactions with benzodiazepine receptors in rat cortex and cerebellum in vitro. J. Neurochem. 42, 745–53;

    Google Scholar 

  • Williams, M. and Yarborough, G.G. (1979) Enhancement of in vitro binding and some of the pharmacological properties of diazepam by a novel antihelminthic agent, avermectin Bla. Eur. J. Pharmacol. 56, 273–6

    Google Scholar 

  • Witte, P.U. and Matthaei, H. (1980) Mikrochemische Methoden für neurobiologische Unterschungen, pp. 99–101. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Wright, D.J. (1986) Biological activity and mode of action of avermectins. In: Ford, M.G., Lunt, G.G., Reay, R.C. and Usherwood, P.N.R. (eds) Neuropharmatcology and pesticide action, pp. 174–202. Ellis amp Horwood, Chichester

    Google Scholar 

  • Wu, J-Y., Chude, O., Weber, B., Driskell, J. and Roberts, E. (1976) Properties of; L-glutamate decarboxylase from crayfish. Trans. Am. Soc. Neurosci. 7, 190

    Google Scholar 

  • Wu, J-Y., Chude, O., Wein, J., Roberts, E., Saito, K. and Wong, K. (1978) Distribution and tissue specificity of glutamate decarboxylase (EC 4.1.1.15) J. Neurochem. 30, 849–59

    Google Scholar 

  • Wu, J-Y., Matsuda, T. and Roberts, E. (1973) Purification and characterization of glutamate decarboxylase from mouse brain. J. Biol. Chem. 248, 3029–34

    Google Scholar 

  • Zukin, S.R., Young, A.B. and Snyder, S.H. (1974) Gamma-aminobutyric acid binding to receptor sites in rat central nervous system. Proc. Natl. Acad. Sci. USA 71, 4802–7

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 G.G. Lunt and R.W. Olsen

About this chapter

Cite this chapter

Robinson, T.N., Olsen, R.W. (1988). GABA. In: Lunt, G.G., Olsen, R.W. (eds) Comparative Invertebrate Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9804-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9804-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9806-0

  • Online ISBN: 978-1-4615-9804-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics