Skip to main content

Abstract

It is estimated that 97 per cent of animal species (1 200 000) are invertebrates and 78 per cent are insects. Yet most biochemical research on cholinergic transmission has been conducted on vertebrates. There are obvious advantages to studying the invertebrate nervous system. It has simpler cellular organisation and clearly identifiable neurones, which allow for the investigation and understanding of the basic principles of neurotransmission and neuronal integration of signals. Also, the availability of anatomical, physiological and pharmacological data on certain neurones, whose regulation of certain behaviours is known (such as learning in the marine snail Aplysia (Kandel, 1979) and in the American cockroach Periplaneta americana (Sattelle et al., 1983), and food aversion learning in the terrestrial mollusc Limax maximus (Kelly, 1981)) provides information on the basic mechanisms that underlie these behaviours. Furthermore, the Genetics of an insect, Drosophila, are the best studied of all animal species, which makes possible the systematic and direct generation of single gene mutants, selection of the relevant ones and identification and isolation of the altered gene and its product. The mutation can be mapped accurately in the chromosome and cloned using recombinant DNA technology. The availability of behavioural mutants in Drosophila may help elucidate the nature of the macromolecular components involved in neurochemical mechanisms and their role in normal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A.A., Smith, J.P. and Akhtar, R.A. (1985) Polyphosphoinositides and muscarinic cholinergic and a,-adrenergic receptors in the iris smooth muscle. In: Bleasdale, J.E., Eichberg, J. and Hauser, G. (eds) Inositol and phosphoinositides: metabolism and regulation, pp. 275–98. Humana Press, Clifton, NJ

    Google Scholar 

  • Adams, P.R. and Sakmann, B. (1978) Decamethonium both opens and blocks endplate channels. Proc. Natl Acad. Sci. USA 75, 2994–8

    Google Scholar 

  • Adler, M., Albuquerque, E.X. and Lebeda, F.J. (1978) Kinetic analysis of end plate currents altered by atropine and scopolamine. Molec. Pharmacol. 14, 514–29

    Google Scholar 

  • Albuquerque, E.X., Tsai, M.-C., Aronstam, R.S., Witkop, B., Eldefrawi, A.T. and Eldefrawi, M.E. (1980) Phencyclidine interactions with ionic channels of the acetylcholine receptor and electrogenic membranes. Proc. Natl. Acad. Sci. USA 77, 1224–8

    Google Scholar 

  • Aldridge, W.N. (1953) The differentiation of true and pseudocholinesterase by organophosphorus compounds. Biochem J. 53 62–7

    Google Scholar 

  • Anctil, M. (1981) Luminescence control in isolated notopods of the tubeworm Chaetopterus variopedatus: effects of cholinergic and GABAergic drugs. Comp. Biochem. Physiol. 68C, 187–94

    Google Scholar 

  • Anderson, D.C., King, S.C. and Parsons, S.M. (1983) Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Molec. Pharmacol. 24, 48–54

    Google Scholar 

  • Anderson, M. and Mrose, H. (1976) Chemical excitation of the proventriculus of the polychaete worm, Syllis spongiphila. J. exp. Biol. 75, 113–22

    Google Scholar 

  • Aoshima, H., Cash, D. and Hess, G.P. (1981) Mechanism of inactivation (desensitization) of acetylcholine receptor. Investigations by fast reaction techniques with membrane vesicles. Biochemistry 20, 3467–73

    Google Scholar 

  • Aracava, Y. and Albuquerque, E.X. (1984) Meproadifen enhances activation and desensitization of the acetylcholine receptor-ionic channel complex (AChR): single channel studies. FEBS Lett. 174, 261–1A

    Google Scholar 

  • Aronstam, R.S., Triggle, D.J. and Eldefrawi, M.E. (1979) Structural and stereochemical requirements for muscarinic receptor binding. Molec. Pharmacol. 15, 227–34

    Google Scholar 

  • Arpagaus, M. and Toutant, J.-P. (1985) Polymorphism of acetylcholinesterase in adult Pieris brassicae heads. Evidence for detergent-insensitive and Triton X- 100-interacting forms. Neurochem. Int. 1, 793–804

    Google Scholar 

  • Artola, A., Callec, J.J., Hue, B., David, J.A. and Sattelle, D.B. (1984) Actions of amantadine at synaptic and extrasynaptic cholinergic receptors in the central nervous system of the cockroach Periplaneta americana. J. Insect Physiol. 30, 185–90

    Google Scholar 

  • Ascher, P., Marty, A. and Neild, T.O. (1978) The mode of action of antagonist of excitatory response to acetylcholine in Aplysia neurones. J. Physiol. (Lond.) 278, 207–35

    Google Scholar 

  • Badamchian, M. and Carroll, P.T. (1985) Molecular weight determinations of soluble and membrane-bound fractions of choline o-acetyltransferase in rat brain. J. Neurosci. 5, 1955–64

    Google Scholar 

  • Barker, D.L., Herbert, E., Hildebrand, J.G. and Kravitz, E.A. (1972) Acetylcholine and lobster sensory neurones. J. Physiol. (Lond.) 226, 205–29

    Google Scholar 

  • Barker, L.R., Bueding, E. and Timms, A.R. (1966) The possible role of acetylcholine in Schistosoma mansoni. Br. J. Pharmacol. 26, 656–65

    Google Scholar 

  • Benishin, C.G. and Carroll, P.T. (1981) Differential sensitivity of soluble and membrane-bound forms of choline-O-acety transferase to inhibition by coenzyme A. Biochem. Pharmacol. 30, 2483–4

    Google Scholar 

  • Beranek, A.P. (1974) Esterase variation and organophosphate resistance in populations of Aphis fabae and Myzus persicae. Entom. Exp. Appl. 17, 129–42

    Google Scholar 

  • Berridge, M.J. (1985)-The molecular basis of communication within the cell. Sci. Amer. 253, 142–52

    Google Scholar 

  • Betz, H. and Pfeiffer, F. (1984) Monoclonal antibodies against the α-bungarotoxin-binding protein of chick optic lobe. J. Neurosci. 4, 2095–105

    Google Scholar 

  • Bevan, S. and Steinbach, J.H. (1977) The distribution of α-bungarotoxin binding sites on mammalian skeletal muscle developing in vivo. J. Physiol. (Lond.) 267, 195–213

    Google Scholar 

  • Birdsall, N.J.M. and Hulme, E.C. (1983) Muscarinic receptor subclasses. Trends Pharmacol. Sci. 4, 459–63

    Google Scholar 

  • Birdsall, N.J.M., Hulme, E.C. and Stockton, J.M. (1983) Muscarinic receptor heterogeneity. Trends Pharmacol Sci. Suppl In: Hirschowitz, B.I., Hammer, R., Giachetti, A., Keirns, J.J. and Levine, R.R. (eds) Proc. Int. Symp. on Subtypes of Muscarinic Receptors, pp. 4–8. Elsevier, Amsterdam

    Google Scholar 

  • Blagburn, J.M., Beadle, D.J. and Sattelle, D.B. (1985) Development of chemo-sensitivity of an identified insect interneurone. J. Neurosci. 5, 1167–75

    Google Scholar 

  • Bon, S. and Massoulie, J. (1976) Collagen-tailed and hydrophobic components of acetylcholinesterase in Torpedo marmorata electric organ. Proc. Natl. Acad. Sci. USA 77, 4464–8

    Google Scholar 

  • Breer, H. (1981a) Characterization of synaptosomes from the central nervous system of insects. Neurochem. Int. 3, 155–63

    Google Scholar 

  • Breer, H. (1981b) Properties of putative nicotinic and muscarinic cholinergic receptors in the central nervous system of Locusta migratoria. Neurochem. Int. 3, 43–52

    Google Scholar 

  • Breer, H. (1982) Uptake of [N-Me-3H] choline by synaptosomes from the central nervous system of Locusta migratoria. J. Neurobiol. 13, 107–17

    Google Scholar 

  • Breer, H. (1983) Choline transport by synaptosomal membrane vesicles isolated from insect nervous tissue. FEBS Lett. 153, 345–8

    Google Scholar 

  • Breer, H. and Benke, D. (1985) Synthesis of acetycholine receptors in Xenopus oocytes induced by poly (A)+-mRNA from locust nervous tissue. Naturwiss. 72, 213–14

    Google Scholar 

  • Breer, H. and Jeserich, G. (1984) Invertebrate synaptosomes — implications for comparative neurochemistry. In: Current topics in research on synapses 1, pp. 165–210. Alan Liss, New York

    Google Scholar 

  • Breer, H., Kleene, R. and Hinz, G. (1985) Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects. J. Neurosci. 5, 3386–92

    Google Scholar 

  • Breer, H. and Knipper, M. (1985) Effects of neurotoxins on the high affinity translocation of choline in synaptosomal membrane vesicles from insects. Comp. Biochem. Physiol. 81C, 219–22

    Google Scholar 

  • Breer, H. and Lueken, W. (1983) Transport of choline by membrane vesicles prepared from synaptosomes of insect nervous tissue. Neurochem. Int. 5, 713–20

    Google Scholar 

  • Bregestovski, P.D., Bukharaeva, E.A. and Iljin, V.I. (1979) Voltage clamp analysis of acetylcholine receptor desensitization in isolated mollusc neurones. J. Physiol. 297, 581–95

    Google Scholar 

  • Brisson, A. and Unwin, P.N.T. (1985) Quaternary structure of the acetylcholine receptor. Nature (Lond.) 315, 474–1

    Google Scholar 

  • Brown, J.H., Goldstein, D. and Masters, S.B. (1985) The putative M, muscarinic receptor does not regulate phosphoinositide hydrolysis. Studies with pirenzepine and McN-A343 in chick heart and astrocytoma cells. Molec. Pharmacol. 27, 525–31

    Google Scholar 

  • Brownstein, M., Saavedra, J.M., Axelrod, J., Zeman, G.H. and Carpenter, D.O. (1974) Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proc. Natl. Acad. Sci. USA 71, 4662–5

    Google Scholar 

  • Buchner, E. and Rodrigues, V. (1983) Autoradiographic localization of [3H]choline uptake in the brain of Drosophila melanogaster. Neurosci. Lett. 42, 25–31

    Google Scholar 

  • Carbonetto, S.T., Fambrough, D.M. and Muller, K.J. (1978) Non-equivalence of o- bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc. Natl. Acad. Sci. USA 75, 1016–20

    Google Scholar 

  • Chad, J.E., Kerkut, G.A. and Walker, R.J. (1979) Ramped voltage-clamp study of the action of acetylcholine on three types of neurons in the snail (Helix aspersa) brain. Comp. Biochem. Physiol. 63C, 269–78

    Google Scholar 

  • Chadwick, L.E. (1963) Actions on insects and other invertebrates. In: Koelle, G.B. (ed.) Cholinesterases and anticholinesterase agents, pp. 741–98. Springer Verlag, Berlin

    Google Scholar 

  • Chance, M.R.A. and Mansour, T.E. (1953) A contribution to the pharmacology of movement in the liver fluke. Br. J. Pharmacol 8, 134–8

    Google Scholar 

  • Chang, Y.C. (1975) The end plate graded potentials from the neuromuscular system of the earthworm, Pheretima hawayana R. Comp. Biochem. Physiol 51A, 237–40

    Google Scholar 

  • Changeux, J.-P., Devillers-Thiery, A. and Chemouilli, P. (1984) Acetylcholine receptor: an allosteric protein. Science 225, 1335–45

    Google Scholar 

  • Chaudhary, K.D., Srivastava, V. and Lemonde, A. (1966) Acetylcholinesterase in Tribolium confusum Duval. Arch. Int. Physiol Biochim. 74., 416–28

    Google Scholar 

  • Clarke, B.S. and Donnellan, J.F. (1982) Concentrations of putative neurotransmitters in the CNS of quick-frozen insects. Insect Biochem. 12, 623–38

    Google Scholar 

  • Conti-Tronconi, B.M., Dunn, S.M.J., Barnard, E.A., Dolly, J.O., Lai, F.A., Ray, N. and Raftery, M.A. (1985) Brain and muscle nicotinic acetycholine receptors are different but homologous proteins. Proc. Natl Acad. Sci. USA 82, 5208–12

    Google Scholar 

  • Cottrell, G.A. and Powell, B. (1970) Choline acetyltransferase in the snail brain. Comp. gen. Pharmacol 1, 251–3

    Google Scholar 

  • Crawford, G., Slemmon, J.R. and Salvaterra, P.M. (1982) Monoclonal antibodies selective for Drosophila melanogaster choline acetyltransferase. J. Biol Chem. 257, 3853–6

    Google Scholar 

  • Culotti, J.G. and Klein, W.L. (1983) Occurrence of muscarinic acetylcholine receptors in wild type and cholinergic mutants of Caenorhabditis elegans. J. Neurosci. 3, 359–68

    Google Scholar 

  • Dadi, H.K. and Morris, R.J. (1984) Muscarinic cholingeric receptor of rat brain. Factors influencing migration in electrophoresis and gel filtration in sodium dodecyl sulphate. Eur. J. Biochem. 144, 617–28

    Google Scholar 

  • Dauterman, W.C. and Mehrotra, K.N. (1963) The N-alkyl group specificity of cholinesterase from the housefly, Musca domestica L. and the two-spotted spider mite, Tetraychus telarius L. J. Insect Physiol 9, 257–63

    Google Scholar 

  • David, J.A., Crowley, P.J., Hall, S.G., Battersby, M. and Sattelle, D.B. (1984) Action of synthetic piperidine derivatives on an insect acetylcholine receptor/ion channel complex. J. Insect Physiol 30, 191–6

    Google Scholar 

  • David, J.A. and Sattelle, D.B. (1984) Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J. exp. Biol 108, 119–36

    Google Scholar 

  • Denburg, J.L., Eldefrawi, M.E. and O’Brien, R.D. (1972) Macromolecules from lobster axon membranes that bind cholinergic ligands and local anesthetics. Proc. Natl Acad. Sci. USA 69, 177–81

    Google Scholar 

  • Dowdall, M.J. and Whittaker, V.P. (1973) Comparative studies in synaptosome formation: the preparation of synaptosomes from the head ganglion of the squid, Loligo pealli. J. Neurochem. 20, 921

    Google Scholar 

  • Driskell, W.J., Weber, B.H. and Roberts, E. (1978) Purification of choline acetyl-transferase from Drosophila melanogaster. J. Neurochem. 30, 1135–41

    Google Scholar 

  • Ducis, I. and Whittaker, V.P. (1985) High-affinity, sodium-gradient-dependent transport of choline into vesiculated presynaptic plasma membrane fragments from the electric organ of Torpedo marmorata and reconstitution of the solubilized transporter into liposomes. Biochim. Biophys. Acta 815, 109–27

    Google Scholar 

  • Dudai, Y. (1978) Properties of an α-bungarotoxin-binding cholinergic nicotinic receptor from Drosophila melanogaster. Biochim. Biophys. Acta 539, 505–17

    Google Scholar 

  • Dudai, Y. and Ben-Barak, J. (1977) Muscarinic receptor in Drosophila melano-gaster demonstrated by binding of [3H]-quinuclidinyl benzilate. FEBS Lett. 81, 134–6

    Google Scholar 

  • Eckenstein, F. and Sofroniew, M.V. (1983) Identification of central cholinergic neurons containing both choline transferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J. Neurosci. 3, 2286–91

    Google Scholar 

  • Eldefrawi, A.T. (1984) Acetylcholinesterases and anticholinesterases. In: Kerkut, G.A. and Gilbert, L.I. (eds) Comprehensive insect physiology, biochemistry and pharmacology, pp. 115–30. Pergamon Press, Oxford

    Google Scholar 

  • Eldefrawi, M.E. and Eldefrawi, A.T. (1980) Putative acetylcholine receptors in housefly brain. In: Sattelle, D.B., Hall, L.M. and Hildebrand, J.G. (eds) Receptors for neurotransmitters, hormones andpheromones in insects, pp. 59–70. Elsevier North Holland, Biomed. Press, Amsterdam

    Google Scholar 

  • Eldefrawi, M.E. and Eldefrawi, A.T. (1987) Nervous system based insecticides. In: Hodgson, E. and Kuhr, R.J. (eds) Safer insecticides: development and use, Marcel Dekker, New York

    Google Scholar 

  • Eldefrawi, A.T., Miller, E.R. and Eldefrawi, M.E. (1982) Binding of depolarizing drugs to the ionic channel sites of the nicotinic acetylcholine receptor. Biochem. Pharmacol 31, 1819–22

    Google Scholar 

  • Eldefrawi, A.T. and O’Brien, R.D. (1970) Binding of muscarone by extracts of housefly brain: relationship to receptors for acetylcholine. J. Neurochem. 17, 1287–93

    Google Scholar 

  • Eldefrawi, M.E., Tripathi, R.K. and O’Brien, R.D. (1970) Acetylcholinesterase isozymes from the house-fly brain. Biochim. Biophys. Acta 212, 308–14

    Google Scholar 

  • Eldefrawi, M.E., Warnick, J.E., Schofield, G.G., Albuquerque, E.X. and Eldefrawi, A.T. (1981) Interaction of imipramine with the ionic channel of the acetylcholine receptor of motor endplate and electric organ. Biochem. Pharmacol. 30, 1391–4

    Google Scholar 

  • El-Fakahany, E.F., Eldefrawi, A.T. and Eldefrawi, M.E. (1982) Nicotinic acetylcholine receptor densensitization studied by [3H]perhydrohistrionicotoxin binding. J. Pharmacol. Exp. Ther. 221, 694–700

    Google Scholar 

  • Emson, P.C., Malthe-Sorenssen, D. and Fonnum, F. (1974) Purification and properties of choline acetyltransferase from the nervous system of different invertebrates. J. Neurochem. 22, 1089–98

    Google Scholar 

  • Erzen, I. and Brzin, M. (1979) Cholinergic mechanisms in Planariatorva. Comp. Biochem. Physiol. 64C, 207–16

    Google Scholar 

  • Feigenbaum, P. and El-Fakahany, E.E. (1985) Regulation of muscarinic cholinergic receptor density in neuroblastoma cells by brief exposure to agonist: possible involvement in desensitization of receptor function. J. Pharmacol. Exp. Ther. 233, 134–40

    Google Scholar 

  • Finer-Moore, J. and Stroud, R.M. (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81, 155–9

    Google Scholar 

  • Fitzpatrick-McElligott, S. and Stent, G.S. (1981) Appearance and localization of acetylcholinesterase in embryo of the leech Helobdella triserialis. J. Neurosci. 1, 901–7

    Google Scholar 

  • Florey, E. (1973) Acetylcholine as sensory transmitter in crustacean. J. Comp. Physiol. 83, 1–16

    Google Scholar 

  • Florey, E. and Florey, E. (1965) Cholinergic neurones in the Onychophora: a comparative study. Comp. Biochem. Physiol. 15, 125–36

    Google Scholar 

  • Florio, V.A. and Sternweis, P.C. (1985) Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J. Biol. Chem. 260, 3477

    Google Scholar 

  • Fluck, R.A. and Jaffe, M.J. (1975) Cholinesterases from plant tissues. Biochim. Biophys. Acta 410, 130–4

    Google Scholar 

  • Frank, E. and Fischbach, G.D. (1977) ACh receptors accumulate at newly formed nerve-muscle synapses in vitro. In: Lash, J.W. and Burger, M.M. (eds) Cell and tissue interactions, pp. 285–92. Raven Press, New York

    Google Scholar 

  • Frontali, N., Piazza, R. and Scopelliti, R. (1971) Localization of acetylcholinesterase in the brain of Periplaneta americana. J. Insect Physiol 17, 1833–42

    Google Scholar 

  • Fulton, B.P. (1982) Presynaptic acetylcholine receptors at the excitatory amino acid synapse in locust muscle. Neuroscience 7, 2117–24

    Google Scholar 

  • Gardner, C.R. and Cashin, C.H. (1975) Some aspects of monoamine function in the earthworm, Lumbricus terrestris. Neuropharmacology 14, 493–500

    Google Scholar 

  • Gardner, C.R. and Walker, R.J. (1982) The roles of putative neurotransmitters and neuromodulators in annelids and related invertebrates. Progr. Neurobiol. 18, 81–120

    Google Scholar 

  • Geffard, M., Vieillemaringe, J., Heinrich-Rock, A.-M. and Duris, P. (1985) Anti- acetylcholine antibodies and first immunocytochemical application in insect brain. Neurosci. Lett. 57, 1–6

    Google Scholar 

  • Gepner, J.I., Hall, L.M. and Sattelle, D.B. (1978) Insect acetylcholine receptors as a site of insecticide action. Nature (Lond.) 276, 188–90

    Google Scholar 

  • Giller, E., Jr and Schwartz, J.H. (1971) Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica. J. Neurophysiol. 34, 93–107

    Google Scholar 

  • Goodman, C.S. and Spitzer, N.C. (1979) Embryonic development of identified neurones: differentiation from neuroblast to neurone. Nature (Lond.) 280, 208–14

    Google Scholar 

  • Goodman, C.S. and Spitzer, N.C. (1980) Embryonic development of neurotransmitter receptors in grasshoppers. In: Sattelle, D.B., Hall, L.M. and Hildebrand, J.G. (eds) Receptors for neurotransmitters, hormones and pheromones in insects, pp. 195–207. Elsevier North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Greenspan, R.J. (1980) Mutation of choline acetyltransferase and associated neural defects in Drosophila melanogaster. J. Comp. Physiol. 137, 83–92

    Google Scholar 

  • Gunderson, C.B., Katz, B. and Miledi, R. (1982) The antagonism between botulinum toxin and calcium in motor nerve terminals. Proc. Roy. Soc. Lond. B216, 369–76

    Google Scholar 

  • Haga, K., Haga, T., Ichiyama, A., Katada, T., Kurose, H. and Ui, M. (1985) Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein. Nature (Lond.) 316, 731–3

    Google Scholar 

  • Haim, N., Nahum, S. and Dudai, Y. (1979) Properties of a putative muscarinic cholinergic receptor from Drosophila melanogaster. J. Neurochem. 32, 543–52

    Google Scholar 

  • Hall, J.C. and Kankel, D.R. (1976) Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics 83, 517–35

    Google Scholar 

  • Hall, L.M. (1980) Biochemical and genetic analysis of an o-bungarotoxin-binding receptor from Drosophila melanogaster. In: Sattelle, D.B., Hall, L.M. and Hildebrand, J.G. (eds) Receptors for neurotransmitters, hormones and pheromones in insects, pp. 111–24. Elsevier North-Holland, Amsterdam

    Google Scholar 

  • Hall, L.M. and Teng, N.N.H. (1975) Localization of acetylcholine receptors in Drosophila melanogaster. In: McMahon, D. and Fox, C.F. (eds) Developmental biology — pattern formation — gene regulation, pp. 282–9 Benjamin, Menlo Park, CA

    Google Scholar 

  • Hall, L.M., Von Borstel, R.W., Osmond, B.C., Hoeltzli, S.D. and Hudson, T.H. (1978) Genetic variants in an acetylcholine receptor from Drosophila melanogaster. FEBS Lett. 95, 243–6

    Google Scholar 

  • Hammer, R., Berrie, C.P., Birdsall, N.J.M., Burgen, A.S.V. and Hulme, E.C. (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature (Lond.) 283, 90–2

    Google Scholar 

  • Harris, H. (1975) The principles of human biochemical Genetics. Elsevier North-Holland, Amsterdam

    Google Scholar 

  • Harris, R., Cattell, K.J. and Donnellan, J.F. (1981) The purification and molecular characterisation of a putative nicotinic muscarinic acetylcholine receptor from housefly heads. Insect Biochem. 11, 371–85

    Google Scholar 

  • Harvey, A.L. and Karlsson, E. (1984) Polypeptide neurotoxins from mamba venoms that facilitate transmitter release. Trends Pharmacol Sci. Feb., 71–2

    Google Scholar 

  • Herron, G.S. and Schimerlik, M.I. (1983) Glycoprotein properties of the solubilized atrial muscarinic acetylcholine receptor. J. Neurochem. 41, 1414–20

    Google Scholar 

  • Hersh, L.B., Wainer, B.H. and Andrews, L.P. (1984) Multiple isoelectric and molecular weight variants of choline acetyltransferase: artifact or real? J. Biol Chem. 259, 1253–8

    Google Scholar 

  • Hildebrand, J.G., Hall, L.M. and Osmond, B. (1979) Distribution of binding sites for 125I-labeled α-bungarotoxin in normal and deafferented antennal lobes of Manduca sexta. Proc. Natl Acad. Sci. USA 76, 499–503

    Google Scholar 

  • Hootman, S.R., Picado-Leonard, T.M. and Burnham, D.B. (1985) Muscarinic acetylcholine receptor structure in acinar cells of mammalian exocrine glands. J. Biol Chem. 260, 4186–94

    Google Scholar 

  • Houk, E.J., Hardy, J.L. and Cruz, W.J. (1981) Acetylcholinesterases of the mosquito Culex tarsalis Coquillett. Comp. Biochem. Physiol 69C, 117–20

    Google Scholar 

  • Husain, S.S. and Mautner, H.G. (1973) Purification of choline acetyltransferase of squid head ganglia. Proc. Natl Acad. Sci. USA 70, 3749–53

    Google Scholar 

  • Ikeda, S.R., Aronstam, R.S. and Eldefrawi, M.E. (1980) Nature of regional and chemically-induced differences in the binding properties of muscarinic acetylcholine receptors from rat brain. Neuropharmacology 19, 575–85

    Google Scholar 

  • Ito, Y., Kuriyama, H. and Tashiro, N. (1970) Effects of catecholamines on the neuromuscular junction of the somatic muscle of the earthworm. J. exp. Biol 54, 167–86

    Google Scholar 

  • Jaffe, M.J. (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine. Plant Physiol 46, 768–77

    Google Scholar 

  • Johnson, C.D. and Stretton, A.O.W. (1985) Localization of choline acetyltransferase within identified motoneurons of the nematode Ascaris. J. Neurosci. 5, 1984–92

    Google Scholar 

  • Jones, S.W., Galasso, R.T. and O’Brien, R.D. (1977) Nicotine and α-bungarotoxin binding to axonal and non-neural tissue. J. Neurochem. 29, 803–9

    Google Scholar 

  • Jones, S.W., Sudershan, P. and O’Brien, R.D. (1981) α-Bungarotoxin binding in house fly heads and Torpedo electroplax. J. Neurochem. 36, 447–53

    Google Scholar 

  • Jope, R.S. and Johnson, V.W. (1986) Quinacrine and 2-(4-phenylpiperidino)cyclo-hexanol (AH5183) inhibit acetylcholine release and synthesis in rat brain slices. Molec. Pharmacol 29, 45–51

    Google Scholar 

  • Kandel, E.R. (1979) Cellular insights into behavior and learning. Harvey Lect. Ser. 73, 19–92

    Google Scholar 

  • Karlin, A. (1983) The anatomy of a receptor. Neurosci. Commen. 1, 111–23

    Google Scholar 

  • Katz, B. and Miledi, R. (1973) The characteristics of ‘end-plate noise’ produced by different depolarizing drugs. J. Physiol (Lond.) 230, 707–17

    Google Scholar 

  • Katz, B. and Miledi, R. (1978) A re-examination of curare action at the motor endplate. Proc. Roy. Soc. Lond. B 203, 119–33

    Google Scholar 

  • Kehoe, J. (1972a) Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones. J. Physiol (Lond,) 225, 85–114

    Google Scholar 

  • Kehoe, J. (1972b) Three acetylcholine receptors in Aplysia neurones. J. Physiol (Lond.) 225, 115–46

    Google Scholar 

  • Kehoe, J., Sealock, R. and Bon, C. (1976) Effects of α-toxins from Bungarus multicinctus and Bungarus caeruleus on cholinergic responses in Aplysia neurons. Brain Res. 107, 527–40

    Google Scholar 

  • Keller, K.J., Martino, A.M., Hall, D.P., Schwartz, R.D. and Taylor, R.L. (1985) High affinity binding of [3H] acetylcholine to muscarinic cholinergic receptors. J. Neurosci. 5, 1577–82

    Google Scholar 

  • Kelly, L.E. (1981) The regulation of protein phosphorylation in synaptosomal fractions from Drosophila heads: the role of cyclic adenosine monophosphate and calcium/calmodulin. Comp. Biochem. Physiol 69B, 61–7

    Google Scholar 

  • Kemp, G., Bentley, L., McNamee, M.G. and Morley, B.J. (1985) Purification and characterization of the α-bungarotoxin binding protein from rat brain. Brain Res. 347 274–83

    Google Scholar 

  • Kerkut, G.A., Pitman, R.M. and Walker, R.J. (1969) Ionophoretic application of acetylcholine and GABA onto insect central neurones. Comp. Biochem. Physiol. 31, 611–33

    Google Scholar 

  • Kiefer, G. (1959) Pharmakologische Untersuchungen über den Automatismus der Lateralherzen des Regenwurmes Lumbricus terrestris. Z. Wiss. Zool. 162, 357- 66

    Google Scholar 

  • Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K.-I., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Miyata, T. and Numa, S. (1985) Primary structure of delta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem. 149, 5–13

    Google Scholar 

  • Kuffier, D.P. (1978) Neuromuscular transmission in longitudinal muscles of the leech Hirudo medicinalis. J. Comp. Physiol 124, 333–8

    Google Scholar 

  • Kupfer, C. and Koelle, G.B. (1951) A histochemical study of cholinesterase during formation of the motor endplate of the albino rat. J. Exp. Zool 116, 397–413

    Google Scholar 

  • Lees, G., Beadier, D.J. and Botham, R.P. (1983) Cholinergic receptors on cultured neurones from the central nervous system of embryonic cockroaches. Brain Res. 288, 49–59

    Google Scholar 

  • Lentz, T.L. (1966) Histochemical localization of neurohumors in a sponge. J. Exp. Zool 162, 171–80

    Google Scholar 

  • Lester, D.S. and Gilbert, L.I. (1985) Choline acetyltransferase activity in the larval brain of Manduca sexta. Insect Biochem. 15, 685–94

    Google Scholar 

  • Lester, H.A., Changeux, J.-P. and Sheridan, R.E. (1975) Conductance increases produced by bath application of cholinergic agonists to Electrophorus electricus electroplaques. J. gen. Physiol 65, 797–816

    Google Scholar 

  • Levitan, H. and Tauc, L. (1972) Acetylcholine receptors: topographic distribution and pharmacological properties of two receptor types on a single molluscan neurone. J. Physiol (Lond.) 222, 537–58

    Google Scholar 

  • Livingstone, M.S. (1985) Genetic dissection of Drosophila adenylate cyclase. Proc. Natl Acad. Sci. USA 82, 5992–6

    Google Scholar 

  • Lummis, S.C.R. and Sattelle, D.B. (1985) Binding of N-[propionyl- [3H] propionylated α-bungarotoxin and L -(benzilic-4,4’-[3H] quinuclidinyl) benzilate to CNS extracts of the cockroach Periplaneta americana. Comp. Biochem. Physiol 80C, 75–83

    Google Scholar 

  • Lummis, S.C.R., Sattelle, D.B. and Ellory, J.C. (1984) Molecular weight estimates of insect cholinergic receptors by radiation inactivation. Neurosci. Lett. 44, 7–12

    Google Scholar 

  • Lundberg, J.M., Hedlund, B. and Bartfai, (1982) Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland. Nature (Lond.) 295, 147–9

    Google Scholar 

  • Luthin, G.R. and Wolfe, B.B. (1985) Characterization of [3H]pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain. J. Pharmacol Exp. Ther. 234, 37–44

    Google Scholar 

  • McCaman, R.E. and Ono, J.K. (1982) Aplysia cholinergic synapses: a model for central cholinergic function. In: Hanin, I. and Goldberg, A.M. (eds) Progress in cholinergic biology: model cholinergic synapses, pp. 23–43. Raven Press, New York

    Google Scholar 

  • McCaman, R.E., Weinreich, D. and Borys, H. (1973) Endogenous levels of acetylcholine and choline in individual neurons of Aplysia. J. Neurochem. 21, 473–6

    Google Scholar 

  • McMahon, K.K. and Hosey, M.M. (1985) Agonist interactions with cardiac muscarinic receptors. Effects of Mg2+, guanine nucleotides, and monovalent cations. Molec. Pharmacol 28, 400–9

    Google Scholar 

  • MacPhee-Quigley, K., Taylor, P. and Taylor, S. (1985) Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase. J. Biol Chem. 260, 12185–9

    Google Scholar 

  • Malthe-Sorenssen, D. (1976) Choline acetyltransferase. Evidence for acetyl transfer by a histidine residue. J. Neurochem. 2J, 873–81

    Google Scholar 

  • Mansour, N.A., Eldefrawi, M.E. and Eldefrawi, A.T. (1977) Isolation of putative acetylcholine receptor proteins from housefly brain. Biochemistry 16, 4126–32

    Google Scholar 

  • Mansour, T.E. (1979) Chemotherapy of parasitic worms: new biochemical strategies. Science 205, 462–9

    Google Scholar 

  • Manulis, S., Ishaaya, I. and Perry, A.S. (1981) Acetylcholinesterase of Aphis criticóla: properties and significance in determining toxicity of systemic organophosphorous and carbamate compounds. Pest. Biochem. Physiol 15, 267–74

    Google Scholar 

  • Marder, E. and Paupardin-Tritsch, D. (1978) The pharmacological properties of some crustacean neuronal acetylcholine, α-aminobutyric acid and L-glutamate responses. J. Physiol (Lond.) 280, 213–36

    Google Scholar 

  • Marder, E. and Paupardin-Tritsch, D. (1980) The pharmacological profile of the acetylcholine response of a crustacean muscle. J. exp. Biol 88, 147–59

    Google Scholar 

  • Marsden, J.R., Bgata, N. and Cain, H. (1981) Evidence for a cerebral cholinergic system and suggested pharmacological patterns of neural organization in the prostomium of the polychaete Nereis virens (Sars). Tiss. Cell 13, 255–67

    Google Scholar 

  • Marshall, L.M. (1981) Synaptic localization of α-bungarotoxin binding which blocks nicotinic transmission at frog sympathetic neurons. Proc. Natl Acad. Sci. USA 78, 1948–52

    Google Scholar 

  • Massoulie, J. and Bon, S. (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Ann. Rev. Neurosci. 5, 57–106

    Google Scholar 

  • Mattissan, A., Nilsson, S. and Fange, R. (1974) Light microscopical and ultra-structural organisation of muscles of Priapulus caudatus (Priapulida) and their responses to drugs, with phylogenetic remarks. Zool Scripta 3, 209–18

    Google Scholar 

  • Meedel, T.H. and Whittaker, J.R. (1979) Development of acetylcholinesterase during embryogenesis of the ascidian Ciona intestinalis. J. exp. Zool 210, 1–10

    Google Scholar 

  • Meyer, M.R. and Reddy, G.R. (1985) Muscarinic and nicotinic cholinergic binding sites in the terminal abdominal ganglion of the cricket (Acheta domesticus). J. Neurochem. 45, 1101–12

    Google Scholar 

  • Michaelson, D.M. and Angel, I. (1981) Saturable acetylcholine transport into purified cholinergic synaptic vesicles. Proc. Natl Acad. Sci. USA 78, 2048–52

    Google Scholar 

  • Miledi, R., Molenaar, P.C. and Polak, R.L. (1983) Electrophysiological and chemical determination of acetylcholine release at the frog neuromuscular junction. J. Physiol (Lond.) 334, 245–54

    Google Scholar 

  • Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M. and Numa, S. (1984) Expression of functional acetylcholine receptor from cloned cDNAs. Nature (Lond) 307, 604–8

    Google Scholar 

  • Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K.-I., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M. and Numa, S. (1985) Location of functional regions of acetylcholine receptor α-subunit by site-directed mutagenesis. Nature (Lond.) 313, 364–9

    Google Scholar 

  • Mumenthaler, M. and Engel, W.K. (1961) Cytological localization of cholinesterase in developing chick embryo skeletal muscle. Acta Anat. (Basel) 47, 274–99

    Google Scholar 

  • Muneoka, Y., Ichimura, Y., Shiba, Y. and Kanno, Y. (1981) Mechanical responses of the body wall strips of an echiuroid worm Urechis unicinctus agents and amino acids. Comp. Biochem. Physiol. 69C, 171–7

    Google Scholar 

  • Murray, T.F., Mpitsos, G.J., Siebenaller, J.F. and Barker, D.L. (1985) Stereoselective L-[3H]quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors. J. Neurosci. 5, 3184–8

    Google Scholar 

  • Natoff, I.L. (1969) The pharmacology of the cholino-receptor in the muscle of Ascaris lumbricoides var. suum. Br. J. Pharmacol. 37, 251–7

    Google Scholar 

  • Newkirk, R.F., Ballou, E.W., Vickers, G. and Whittaker, V.P. (1976) Comparative studies in synaptosome formation: preparation of synaptosomes from the ventral nerve cord of the lobster (Homarus americanus). Brain Res. 101, 103–11

    Google Scholar 

  • Newkirk, R.F., Sukumar, R., Thomas, W.E. and Townsel, J.G. (1981) The preparation and partial characterization of synaptosomes from central nervous tissue of Limulus. Comp. Biochem. Physiol. 70Q 177–84

    Google Scholar 

  • Nicholas, M.T., Moreau, M. and Guerrier, P. (1978) Indirect nervous control of luminescence in the polynoid worm Harmothoe lumulata. J. exp. Zool 206, 427- 32

    Google Scholar 

  • Nistri, A., Cammelli, E, and De Bellis, A.M. (1978) Pharmacological observations on the cholinesterase activity of the leech central nervous system. Comp. Biochem. Physiol. 61C, 203–5

    Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyoato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature (Lond.) 302, 528–32

    Google Scholar 

  • Norman, R.I., Mehraban, F., Barnard, E.A. and Dolly, J.O. (1982) Nicotinic acetylcholine receptor from chick optic lobe. Proc. Natl. Acad. Sci. USA 79, 1321–25

    Google Scholar 

  • O’Donohue, T.L., Millington, W.R., Handelmann, G.E., Contreras, P.C, and Chronwall, B.M. (1985) On the 50th anniversary of Dale’s law: mutiple neurotransmitter neurons. Trends Pharmacol. Sci. 6, 305–8

    Google Scholar 

  • Oh, T.H., Chyu, J.Y. and Max, S.R. (1977) Release of acetylcholinesterase by cultured spinal cord cells. J. Neurobiol. 8, 469–76

    Google Scholar 

  • Olianas, M.C., Onali, P., Schwartz, J.P., Neff, N.H. and Costa, E. (1984) The muscarinic receptor cyclase complex of rat striatum: desensitization following chronic inhibition of acetylcholinesterase activity. J. Neurochem. 42, 1439–43

    Google Scholar 

  • Ono, J. and Salvaterra, P.M. (1981) Snake α-toxin effects on cholinergic and noncholinergic responses of Aplysia californica neurons. J. Neurosci. 1, 259–70

    Google Scholar 

  • Oswald, R.E. and Freeman, J.A. (1981) Alpha-bungarotoxin binding and central nervous system nicotinic acetylcholine receptors. Neuroscience 6, 1–14

    Google Scholar 

  • Ozaki, H. (1974) Localization and multiple forms of acetylcholinesterase in sea urchin embryos. Dev. Growth Differ. 16, 267–79

    Google Scholar 

  • Parsons, S.M., Carpenter, R.S., Koenigsberger, R. and Rothlein, J.E. (1982) Transport in the cholinergic synaptic vesicle. Fed. Proc. 41, 2765–8

    Google Scholar 

  • Patrick, J. and Stallcup, W.B. (1977) Immunological distinction between acetylcholine receptor and the α-bungarotoxin-binding component on sympathetic neurons. Proc. Natl Acad. Sci. USA 74, 4689–92

    Google Scholar 

  • Perkins, B.A. and Cottrell, G.A. (1972) Choline acetyl transferase activity in nervous tissue of Hirudo medicinalis (leech) and Nephrops norvegicus (Norway lobster). Comp. gen. Pharmacol. 3, 19–21

    Google Scholar 

  • Peterson, G.L., Herron, G.S., Yamaki, M., Fullerton, D.S. and Schimerlik, M.I. (1984) Purification of the muscarinic acetylcholine receptor from porcine atria. Proc. Natl. Acad. Sci. USA 81, 4993–7

    Google Scholar 

  • Polsky, R. and Shuster, L. (1976) Preparation and characterization of two isoenzymes of choline acetyltransferase from squid head ganglia. II. Self-association, molecular weight determinations, and studies with inactivating antisera. Biochim. Biophys. Acta 455, 43–6

    Google Scholar 

  • Potter, L.T., Glover, V.A.S. and Saelens, J.K. (1968) Choline acetyltransferase from rat brain. J. Biol. Chem. 243, 3864–70

    Google Scholar 

  • Prempeh, A.B., Prince, A.K. and Hide, E.G. (1972) The reaction of acetyl-coenzyme A with choline acetyltransferase. Biochem. J. 129, 991–4

    Google Scholar 

  • Prescott, D.J., Hildebrand, J.G., Sanes, J.R. and Jewett, S. (1977) Biochemical and developmental studies of acetylcholine metabolism in the central nervous system of the moth Manduca sexta. Comp. Physiol. 56, 77–84

    Google Scholar 

  • Rauh, J.J., Lambert, M.P., Cho. N.J., Chiu, H. and Klein, W.L. (1986) Glycoprotein properties of muscarinic acetylcholine receptors from bovine cerebral cortex. J. Neurochem. 46, 23–32

    Google Scholar 

  • Reichardt, L.F. and Kelly, R.B. (1983) A molecular description of nerve terminal function. Ann. Rev. Biochem. 52, 871–926

    Google Scholar 

  • Robinson, T., Aguilar, O. and Lunt, G. (1984) Interaction of a nicotinic acetylcholine receptor from locust (Schistocerca gregaria) central nervous system with concanavalin A: comparison with vertebrate receptor. Biochem. Soc. Trans. 12, 807–8

    Google Scholar 

  • Ross, D.H. and Triggle, D.J. (1972) Further differentiation of cholinergic receptors in leech muscle. Biochem. Pharmacol. 21, 2533–6

    Google Scholar 

  • Rozhkova, E.K., Malyutina, T.A. and Shishov, B.A. (1980) Pharmacological characteristics of cholinoreception in somatic muscles of the nematode, Ascaris suum. Gen. Pharmacol. 11, 141–6

    Google Scholar 

  • Rudloff, E. (1978) Acetylcholine receptors in the central nervous system of Drosophila melanogaster. Exp. Cell. Res. 111, 185–90

    Google Scholar 

  • Ruess, K.-P. and Lieflander, M. (1979) Action of detergents on covalently labeled, membrane-bound muscarinic acetylcholine receptor of bovine nucleus caudatus. Biochem. Biophys. Res. Commun. 88, 627–33

    Google Scholar 

  • Said, S. (1984) Isolation, localization, and characterization of gastrointestinal peptides. Clin. Biochem. 17, 65–7

    Google Scholar 

  • Sakai, M. (1967) Hydrolysis of acetylthiocholine and butyrylthiocholine by cholin-esterases of insects and a mite. Appl. Ent. Zool 2, 111–12

    Google Scholar 

  • Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K. and Numa, S. (1985) Role of acetylcholine receptor subunits in gating of the channel. Nature (Lond.) 318, 538–43

    Google Scholar 

  • Sakmann, B., Patlak, J. and Neher, E. (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature (Lond.) 286, 71–3

    Google Scholar 

  • Sanes, J.R., Prescott, D.J. and Hildebrand, J.G. (1977) Cholinergic neurochemical development of normal and deafferented antennal lobes during metamorphosis of the moth, Manduca sexta. Brain Res. 119, 389–402

    Google Scholar 

  • Sastry, B.V.R. and Sadavongvivad, C. (1979) Cholinergic systems in non-nervous tissues. Pharmacol. Rev. 30, 65–132

    Google Scholar 

  • Sattelle, D.B. (1980) Acetylcholine receptors of insects. In: Berridge, M.J. and Treherne, J.E. (eds) Advances in insect physiology, pp. 215–315. Academic Press, London

    Google Scholar 

  • Sattelle, D.B. and Breer, H. (1985) Purification by affinity chromatography of a nicotinic acetylcholine receptor from the CNS of the cockroach Periplaneta americana. Comp. Biochem. Physiol 82C, 349–52

    Google Scholar 

  • Sattelle, D.B. and David, J.A. (1983) Voltage-dependent block by histrionicotoxin of the acetylcholine-induced current in an insect motoneurone cell body. Neurosci. Lett. 43, 37–41

    Google Scholar 

  • Sattelle, D.B., Harrow, I.D., David, J.A., Pelhate, M., Callec, J.J., Gepner, J.I. and Hall, L.M. (1985a) Nereistoxin: actions on a CNS acetylcholine receptor/ion channel in the cockroach Periplaneta americana. J. exp. Biol. 118, 37–52

    Google Scholar 

  • Sattelle, D.B., Harrow, I.D., Hue, B., Pelhate, M., Gepner, J.I. and Hall, L.M. (1983) α-Bungarotoxin blocks excitatory synaptic transmission between cercal sensory neurones and giant interneurone 2 of the cockroach, Periplaneta americana. J. exp. Biol. 107, 473–89

    Google Scholar 

  • Sattelle, D.B., Hue, B„ Pelhate, M., Sherby, S.M., Eldefrawi, A.T. and Eldefrawi, M.E. (1985b) Actions of phencyclidine and its thienylpyrrolidine analogue on synaptic transmission and axonal conduction in the central nervous system of the cockroach Periplaneta americana. J. Insect. Physiol. 31, 917–24

    Google Scholar 

  • Schmidt-Nielsen, B.K., Gepner, J.I., Teng, N.N.H. and Hall, L.H. (1977) Characterization of an α-bungarotoxin binding component from Drosophila melanogaster. J. Neurochem. 29, 1013–29

    Google Scholar 

  • Schreiber, G. and Sokolovsky, M. (1985) Muscarinic receptor heterogeneity revealed by interaction with berylium tosylate. Different ligand-receptor conformations versus different receptor subclasses. Molec. Pharmacol 27, 27–31

    Google Scholar 

  • Seeman, G.R. and Houlihan, R.K. (1951) Enzyme systems in Tetrahymena geleii S. II. Acetylcholinesterase activity. Its relation to the motility of the organism and to coordinated ciliary action in general. J. Cell Comp. Physiol 37, 309–21

    Google Scholar 

  • Shain, W., Greene, L.A., Carpenter, D.O., Sytkowski, A.J. and Vogel, Z. (1974) Aplysia acetylcholine receptors: blockade by and binding of α-bungarotoxin. Brain Res. 72, 225–40

    Google Scholar 

  • Shaker, N. and Eldefrawi, A. (1981) Muscarinic receptor in house fly brain and its interaction with chlorobenzilate. Pest. Biochem. Physiol 15, 14–20

    Google Scholar 

  • Shaker, N., Eldefrawi, A.T., Aguayo, L.G., Warnick, J.E., Albuquerque, E.X. and Eldefrawi, M.E. (1982) Interactions of d-tubocurarine with the nicotinic acetylcholine receptor/channel molecule. J. Pharmacol Exp. Ther. 220, 172–7

    Google Scholar 

  • Shaw, K.-P., Aracava, Y., Akaike, A., Daly, J.W., Rickett, D.L. and Albuquerque, E.X. (1985) The reversible cholinesterase inhibitor physostigmine has channel- blocking and agonist effects on the acetylcholine receptor-ion channel complex. Molec. Pharmacol 28, 527–38

    Google Scholar 

  • Sherby, S.M., Eldefrawi, A.T., Albuquerque, E.X. and Eldefrawi, M.E. (1985) Comparison of the actions of carbamate anticholinesterases on the nicotinic acetylcholine receptor. Molec. Pharmacol 27, 343–8

    Google Scholar 

  • Sherby, S.M., Eldefrawi, A.T., David, J.A., Sattelle, D.B. and Eldefrawi, M.E. (1986) Interactions of charatoxins and nereistoxin with the nicotinic acetylcholine receptors of Torpedo electric organ and insect CNS. Arch. Insect Biochem. Physiol 3, 431–45

    Google Scholar 

  • Shibahara, S., Kubo, T., Perski, H.J., Takahashi, H., Noda, M. and Numa, S. (1985) Cloning and sequence analysis of human genomic DNA encoding y subunit precursor of muscle acetylcholine receptor. Eur. J. Biochem. 146, 15–22

    Google Scholar 

  • Silinsky, E.M. (1985) The biophysical pharmacology of calcium-dependent acetyl-choline secretion. Pharmacol. Rev. 37, 81–132

    Google Scholar 

  • Silver, A. (1974) The biology of cholinesterases. Elsevier North-Holland, Amsterdam

    Google Scholar 

  • Skau, K.A. and Brimijoin, S. (1978) Release of acetylcholinesterase from rat hemidiaphragm preparations stimulated through the phrenic nerve. Nature (Lond.) 275, 224–6

    Google Scholar 

  • Soeda, Y., Eldefrawi, M.E. and O’Brien, R.D. (1975) Lobster axon acetylcholin-esterase: a comparison with acetylcholinesterases of bovine erythrocytes, house fly head and Torpedo electroplax. Comp. Biochem. Physiol. 50C, 163–8

    Google Scholar 

  • Souccar, C., Varanda, W.A., Aronstam, R.S., Daly, J.W. and Albuquerque, E.X. (1984) Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. II. Enhancement of desensitization. Molec. Pharmacol. 25, 395–400

    Google Scholar 

  • Spielholz, N.I. and van der Kloot, W.G. (1973) Localization and properties of the cholinesterase in crustacean muscle. J. Cell Biol. 59, 407–20

    Google Scholar 

  • Spivak, C.E., Maleque., Oliveira, A.C., Masukawa, L.M., Tokuyama, T., Daly, J.W. and Albuquerque, E.X. (1982) Actions of the histrionicotoxins at the ion channel of the nicotinic acetylcholine and the voltage sensitive ion channels of muscle membranes. Molec. Pharmacol. 21, 351–61

    Google Scholar 

  • Stockton, J.M., Birdsall, N.J.M., Burgen, A.S.V. and Hulme, E.C. (1983) Modification of the binding properties of muscarinic receptors by gallamine. Molec. Pharmacol. 23, 551–7

    Google Scholar 

  • Strauss, W.L. and Nirenberg, M. (1985) Inhibition of choline acetyltransferase by

    Google Scholar 

  • monoclonal antibodies. J. Neurosci. 1, 175–80

    Google Scholar 

  • Suter, C. and Usherwood, P.N.R. (1985) Action of acetylcholine and antagonists on somata isolated from locust central neurons. Comp. Biochem. Physiol. 80C, 221–9

    Google Scholar 

  • Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T., Takahashi, H., Takahashi, T., Kuno, M. and Numa, S. (1985) Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature (Lond.) 315, 761–4

    Google Scholar 

  • Tauc, L. and Baux, G. (1982) Are there intracellular acetylcholine receptors in the cholinergic synaptic nerve terminals? J. Physiol. (Paris) 78, 366–72

    Google Scholar 

  • Thomas, W.E., Brady, R.N. and Townsel, J.G. (1978) A characterization of α-bungarotoxin-binding in the brain of the horseshoe crab, Limulus polyphemus. Arch. Biochem. Biophys. 187, 53–60

    Google Scholar 

  • Tiedt, T., Albuquerque, E.X., Bakry, N.M., Eldefrawi, M.E. and Eldefrawi, A.T. (1979) Voltage- and time-dependent actions of piperocaine on the ionic channel of the acetylcholine receptor. Molec. Pharmacol. 16, 909–21

    Google Scholar 

  • Trimmer, B.A. and Berridge, M.J. (1985) Inositol phosphates in the insect nervous system. Insect Biochem. 15, 811–15

    Google Scholar 

  • Tsai, M.-C., Mansour, N.A., Eldefrawi, A.T., Eldefrawi, M.E. and Albuquerque, E.X. (1978) Mechanism of action of amantadine on neuromuscular transmission. Molec. Pharmacol. 14, 787–803

    Google Scholar 

  • Usherwood, P.N.R. and Cull-Candy, S.G. (1975) Pharmacology of somatic nerve- muscle synapses. In: Usherwood, P.N.R. (ed.) Insect muscle, pp. 207–80. Academic Press, London

    Google Scholar 

  • Varanda, W.A., Aracava, Y., Sherby, M., Van Meter, W.G., Eldefrawi, M.E. and Albuquerque, E.X. (1985) The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist. Molec. Pharmacol. 28, 128–37

    Google Scholar 

  • Venter, J.C., Eddy, B., Hall., L.M. and Fraser, C.M. (1984) Monoclonal antibodies

    Google Scholar 

  • detect the conservation of muscarinic cholinergic receptor structure from Drosophila to human brain and detect possible structural homology with α- adrenergic receptor. Proc. Natl. Acad. Sci. USA 81, 272–6

    Google Scholar 

  • Vigny, M., Gisiger, V. and Massoulie, J. (1978) ‘Nonspecific’ cholinesterase and acetylcholinesterase in rat tissues: molecular forms, structural and catalytic properties, and significance of the two enzyme systems. Proc. Natl. Acad. Sci. USA 75, 2588–92

    Google Scholar 

  • Voss, G. and Matsumura, F. (1965) Biochemical studies on a modified and normal cholinesterase found in the Leverkusen strains of the two spotted spider mite, Tetranychus urticae. Can. J. Biochem. 43, 63–72

    Google Scholar 

  • Vyas, S. and O’Regan, S. (1985) Reconstitution of carrier-mediated choline transport in proteoliposomes prepared from presynaptic membranes of Torpedo electric organ, and its internal and external ionic requirements. J. Membr. Biol. 85, 111–19

    Google Scholar 

  • Wagner, J.A., Carlson, S.S. and Kelly, R.B. (1978) Chemical and physical characterization of cholinergic synaptic vesicles. Biochemistry 17, 1199–1206

    Google Scholar 

  • Walker, R.J., Woodruff, G.N. and Kerkut, G.A. (1968) The effect of ACh and 5-HT on electrophysiological recordings from muscle fibres of the leech Hirudo medicinalis. Comp. Biochem. Physiol. 24, 987–90

    Google Scholar 

  • Watson, M., Roeske, W.R. Vickroy, T.W., Smith, T.L., Akiyama, K., Gulya, K., Duckies, S.P., Serra, M., Adem, A., Nordberg, A., Gehlert, D.R., Wamsley, J.K. and Yamamura, H.I. (1986) Biochemical and functional basis of putative muscarinic receptor subtypes and its implications. Trends Pharm. Sci. Suppl. Proc. 2nd Int. Symp. Subtypes of Muscarinic Receptors II, 46–55

    Google Scholar 

  • Watson, M., Vickroy, T.W., Roeske, W.R. and Yamamura, H.I. (1984) Subclassification of muscarinic receptors based upon the selective antagonist pirenzepine. Trends Pharmacol. Sci. Suppl. 9–11

    Google Scholar 

  • Watson, M., Yamamura, H.I. and Roeske, W.R. (1983) A unique regulatory profile and regional distribution of [3H] pirenzepine binding in the rat provides evidence for distinct M, and M2 muscarinic receptor subtypes. Life Sci. 32, 3001–11

    Google Scholar 

  • Wells, G.P. (1937) Studies on the physiology of Arenicola marina I. The pacemaker role of the oesophagus and the action of adrenaline and acetylcholine. J. exp. Biol. 14, 117–57

    Google Scholar 

  • White, H.L. and Wu, J.C. (1973) Kinetics of choline acetyltransferases (EC 2.3.1.6) from human and other mammalian central and peripheral nervous tissues. J. Neurochem 20, 297–307

    Google Scholar 

  • Winkler, H., Schmidt, W., Fischer-Colbrie, R. and Weber, A. (1983) Molecular mechanisms of neurotransmitter storage and release: a comparison of the adrenergic and cholinergic system. In: Changeux, J.-P., Glowinski, J., Imbert, M. and Bloom, F.E. (eds) Molecular and cellular interactions underlying higher brain functions, progress in brain research, 58, pp. 11–20 Elsevier, Amsterdam

    Google Scholar 

  • Wolfe, L.S. and Smallman, B.N. (1956) The properties of cholinesterase from insects. J. Cell. Comp. Physiol. 48, 215–35

    Google Scholar 

  • Woodruff, G.N., Walker, R.J. and Newton, L.C. (1971) The actions of some muscarinic and nicotinic agonists on the Retzius cells of the leech. Comp. gen. Pharmacol. 2, 106–17

    Google Scholar 

  • Wu, C.-F. Berneking, J.M. and Barker, D.L. (1983) Acetylcholine synthesis and accumulation in the CNS of Drosophila larvae: analysis of shibirets, a mutant with a temperature-sensitive block in synaptic transmission. J. Neurochem. 40, 1386- 95

    Google Scholar 

  • Yamamura, H.L and Snyder, S.H. (1974) Muscarinic cholinergic binding in rat brain. Proc. Natl. Acad, Sci. USA 71, 1725–9

    Google Scholar 

  • Young, E.F., Ralston, E., Blake, J., Ramachandran, J., Hall, Z.W. and Stroud, R.M. (1985) Topological mapping of acetylcholine receptor: evidence for a model with five transmembrane segments and a cytoplasmic COOH-terminal peptide. Proc. Natl. Acad. Sci. USA 82, 626–30

    Google Scholar 

  • Yu, C.-C. and Booth, G.M. (1971) Inhibition of choline acetylase from the house fly(Musca domestica L.) and mouse. Life Sci. 10, 331–41

    Google Scholar 

  • Zeimal, E.V. and Vulfius, E.A. (1968) The action of cholinomimetics and cholino- lytics on gastropod neurons. In: Salanki, J. (ed.) Neurobiology of Invertebrates, pp. 255–65. Acad. Kiado, Budapest

    Google Scholar 

  • Ziskind, L. and Werman, R. (1975) Sodium ions are necessary for cholinergic desensitization in molluscan neurones. Brain Res. 88, 171–6

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 G.G. Lunt and R.W. Olsen

About this chapter

Cite this chapter

Eldefrawi, A.T., Eldefrawi, M.E. (1988). Acetylcholine. In: Lunt, G.G., Olsen, R.W. (eds) Comparative Invertebrate Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9804-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9804-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9806-0

  • Online ISBN: 978-1-4615-9804-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics