Skip to main content

Abstract

The simplest type of viscoelastic behavior is linear viscoelasticity. This type of behavior is observed when the deformation is sufficiently mild that the molecules of a polymeric material are disturbed from their equilibrium configuration and entanglement state to a negligible extent. Obviously, very small deformations would be in this category. This might be a deformation in which the total strain was very small, or the early stages of a larger deformation. For melts, which have a fading memory and can flow, linear behavior is also observed when a deformation occurs very slowly, as in steady simple shear at very low shear rates. This is because relaxation processes due to Brownian motion are always acting to return the molecules to their equilibrium state, and if the deformation is tending to take them away from this state only very slowly, this relaxation mechanism has plenty of time to “keep up” with this process, with the net result that no significant deviation from equilibrium occurs. One manifestation of this is that at very low shear rates, the viscosity of a polymeric liquid becomes independent of shear rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ferry, Viscoelastic Properties of Polymers, Third Edition, John Wiley & Sons, New York, 1980.

    Google Scholar 

  2. N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelasticity: An Introduction, Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

  3. R. G. Larson, J. Rheol. 29:823 (1985).

    Article  Google Scholar 

  4. R. G. Larson, Rheol. Acta 24:327 (1985).

    Article  Google Scholar 

  5. M. H. Wagner, Rheol Acta 15:136 (1976).

    Article  Google Scholar 

  6. D. R. Wiff, J. Rheol. 22:589 (1978).

    Article  Google Scholar 

  7. C. Y.-C. Lee, D. R. Wiff and V. G. Rogers, J. Macromol. Sci., Phys. B19:211 (1981).

    Google Scholar 

  8. K. F. Wissbrun, J. Rheol. 30:1143 (1986).

    Article  Google Scholar 

  9. M. Kurata, Macromolecules 17:895 (1984).

    Article  Google Scholar 

  10. H. C. Booij and J. H. Thoone, Rheol. Acta 21:15 (1982).

    Article  Google Scholar 

  11. H. C. Booij and J. H. M. Palmen, Rheol. Acta 21:376 (1982).

    Article  Google Scholar 

  12. W. W. Graessley, W. S. Park and R. L. Crawley, Rheol. Acta 16:291 (1977).

    Article  Google Scholar 

  13. P. Leblans, “Constitutive analysis of the nonlinear viscoelasticity of polymer fluids in various types of flow,” Doctoral Thesis, University of Antwerp, Wilrijk, 1986.

    Google Scholar 

  14. G. R. Zeichner and P. D. Patel, Proc. 2nd World Congr. Chem. Eng., Vol. 6, p. 373, Montreal, 1981.

    Google Scholar 

  15. S. Wu, Polym. Eng. Sci. 25:122 (1985).

    Article  Google Scholar 

  16. W. H. Tuminello, “Relating Rheology to Molecular Weight Properties of Polymers,” in Polymer Proc. and Flow Dynamics, Vol. 9 of Encyc. of Fl. Mech., Gulf Publ., 1989.

    Google Scholar 

  17. W. H. Tuminello, Polym. Eng. Sci. 26:1339 (1986).

    Article  Google Scholar 

  18. S. Wu, Polym. Eng. Sci. 28:538 (1988).

    Article  Google Scholar 

  19. W. H. Tuminello, Polym. Eng. Sci. 29:645 (1989).

    Article  Google Scholar 

  20. J. P. Montfort, G. Marin, J. Arman and Ph. Monge, Polymer 19:277 (1978).

    Article  Google Scholar 

  21. J. P. Montfort, G. Marin, J. Arman and Ph. Monge, Rheol. Acta 18:623 (1979).

    Article  Google Scholar 

  22. H. Schuch, Rheol. Acta 27:384 (1988).

    Article  Google Scholar 

  23. D. J. Plazek, N. Raghupathi and S. J. Obron, J. Rheol. 23:477 (1979).

    Article  Google Scholar 

  24. A. C. Papanastasiou, L. E. Scriven and C. W. Macosko, J. Rheol. 27:387 (1983).

    Article  Google Scholar 

  25. H. M. Laun, J. Rheol. 30:459 (1986).

    Article  Google Scholar 

  26. M. Baumgartel and H. H. Winter, SPE Tech. Papers 35:1652 (1989).

    Google Scholar 

  27. J. Honerkamp and J. Weese, “Determination of the relaxation spectrum by a regularization technique,” Macromolecules, submitted 1990.

    Google Scholar 

  28. P. E. Rouse, Jr., J. Chem. Phys. 21:1272 (1953).

    Article  Google Scholar 

  29. B. H. Zimm, J. Chem. Phys. 24:269 (1956).

    Article  Google Scholar 

  30. F. Bueche, J. Chem. Phys. 20:1959 (1952).

    Article  Google Scholar 

  31. G. C. Berry and T. G. Fox, Adv. Polym. Sci. 5:261 (1968).

    Article  Google Scholar 

  32. K. Ninomiya, J. D. Ferry and Y. Oyanagi, J. Phys. Chem. 67:2297 (1963).

    Article  Google Scholar 

  33. H. Leaderman, R. G. Smith and L. C. Williams, J. Polym. Sci. 36:233 (1959).

    Article  Google Scholar 

  34. M. Doi, J. Non-Newt. Fl. Mech. 23:151 (1987).

    Article  Google Scholar 

  35. W. W. Graessley, “Viscoelasticity and Flow of Polymer Melts and Concentrated Solutions,” in Physical Principles of Polymers, Edited by J. E. Mark, Amer. Chem. Soc., Wash. D.C., 1984.

    Google Scholar 

  36. S. F. Edwards, Proc. Phys. Soc. 92:9 (1967).

    Article  Google Scholar 

  37. P. G. deGennes, J. Chem. Phys. 55:572 (1971).

    Article  Google Scholar 

  38. M. Doi and S. F. Edwards, J. Chem. Soc., Faraday Trans. II: 74:1789, 1802, 1818 (1978);

    Google Scholar 

  39. M. Doi and S. F. Edwards, J. Chem. Soc., Faraday Trans. II: 75:38 (1979).

    Article  Google Scholar 

  40. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986.

    Google Scholar 

  41. W. W. Graessley, J. Polym. Sci., Polym. Phys. Ed. 18:27 (1980).

    Article  Google Scholar 

  42. M. Doi, J. Polym. Sci., Polym. Phys. Ed. 21:667 (1983);

    Article  Google Scholar 

  43. M. Doi, J. Polym. Sci. 21:667 (1983).

    Google Scholar 

  44. J. Roovers, Polym. J. 18:153 (1986).

    Article  Google Scholar 

  45. M. Doi, W. W. Graessley, E. Helfand and D. S. Pearson, Macromolecules 20:1900 (1987).

    Article  Google Scholar 

  46. M. Doi and N. Y. Kuzuu, J. Polym. Sci., Polym. Lett. 18:775 (1980).

    Article  Google Scholar 

  47. D. S. Pearson and E. Helfand, Macromolecules 17:888 (1984).

    Article  Google Scholar 

  48. T. C. B. McLeish, Xth Int. Congr. Rheol. 2:115 (1988).

    Google Scholar 

  49. C. F. Curtiss and R. B. Bird, J. Chem. Phys. 74:2016 (1982).

    Article  Google Scholar 

  50. R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Second Edition, John Wiley & Sons, New York, 1987.

    Google Scholar 

  51. A. Kolinski, J. Skolnick and R. Yaris, J. Chem. Phys. 86:1567, 7164, 7174 (1987).

    Google Scholar 

  52. W. C. Dannhauser, W. C. Child, Jr. and J. D. Ferry, J. Colloid Sci. 13:103 (1958).

    Article  Google Scholar 

  53. K. S. Cole and R. H. Cole, J. Chem. Phys. 9:341 (1941).

    Article  Google Scholar 

  54. C. D. Han and K.-W. Lem, Polym. Eng. Rev. 2:135 (1982).

    Google Scholar 

  55. H. M. Laun, Prog. Colloid Polym. Sci. 75:111 (1987).

    Article  Google Scholar 

  56. C. L. Rohn, SPE Tech. Papers 35:870 (1989).

    Google Scholar 

  57. D. J. Plazek, Polym. J. 12:43 (1980).

    Article  Google Scholar 

  58. G. Link and F. R. Schwarzl, Rheol. Acta 26:375 (1987).

    Article  Google Scholar 

  59. S. Onogi, T. Masuda and K. Kitagawa, Macromolecules 3:109 (1970).

    Article  Google Scholar 

  60. G. Marin and W. W. Graessley, Rheol. Acta 16:527 (1977).

    Article  Google Scholar 

  61. T. Masuda, K. Kitagawa, T. Inoue and S. Onogi, Macromolecules 3:116 (1970).

    Article  Google Scholar 

  62. R. D. Andrews and A. V. Tobolsky, J. Polym. Sci. 6:221 (1951).

    Article  Google Scholar 

  63. J. Meissner, J. Appl. Polym. Sci. 16:2877 (1972).

    Article  Google Scholar 

  64. H. M. Laun, Rheol. Acta 17:1 (1978).

    Article  Google Scholar 

  65. G. Marin, J. P. Montfort, J. Arman and Ph. Monge, Rheol. Acta 18:629 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Dealy, J.M., Wissbrun, K.F. (1990). Linear Viscoelasticity. In: Melt Rheology and Its Role in Plastics Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9738-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9738-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9740-7

  • Online ISBN: 978-1-4615-9738-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics