Skip to main content
  • 297 Accesses

Abstract

Extrusion is the most important single polymer processing operation. Virtually every pound of thermoplastic polymer is subjected to an extrusion process at some point in its conversion to a finished article. It is more amenable to theoretical analysis than some other processing operations for a number of reasons:

  1. 1.

    It is a continuous, steady state process, not discontinuous like injection molding,

  2. 2.

    For the most common mode of operation there are no free surfaces within the extruder, so that boundary conditions can be prescribed on known surfaces, and

  3. 3.

    Viscoelastic behavior plays only a minor role, and viscous fluid models have been found adequate for the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Rauwendaal, Polymer Extrusion, Hanser, New York, 1986.

    Google Scholar 

  2. M. J. Stevens, Extruder Principles and Operation, Elsevier Science Publishers, New York, 1985.

    Google Scholar 

  3. Z. Tadmor and I. Klein, Engineering Principles of Plasticating Extrusion, Van Nostrand, New York, 1970.

    Google Scholar 

  4. Z. Tadmor and C. Gogos, Principles of Polymer Processing, John Wiley & Sons, New York, 1979.

    Google Scholar 

  5. R. T. Fenner, in Computational Analysis of Polymer Processing, J. R. A. Pearson and S. M. Richardson, eds., Elsevier Science Publishers, New York, 1983.

    Google Scholar 

  6. L. P. B. M. Janssen, Twin Screw Extrusion, Elsevier Science Publishers, New York, 1978.

    Google Scholar 

  7. M. L. Booy, Polym. Eng. Sci. 21:93 (1981).

    Article  Google Scholar 

  8. S. Middleman, Fundamentals of Polymer Processing, McGraw-Hill, New York, 1977, p. 157.

    Google Scholar 

  9. J. M. McKelvey, Polymer Processing, John Wiley & Sons, New York, 1962.

    Google Scholar 

  10. L. V. Cancio, R. S. Joyner, and P. L. Balin, Plastics Technology 21:40 (1975).

    Google Scholar 

  11. M. Dimitrov and R. Hegele, Kunststoffe 61:815 (1971).

    Google Scholar 

  12. G. A. Kruder and J. T. Kim, SPE J. 29:49 (1973).

    Google Scholar 

  13. D. P. Isherwood, R. N. Pieries and D. Valamonte, Plastics and Rubber Processing and Applications 4:257 (1984).

    Google Scholar 

  14. W. H. Darnell and E. A. J. Mol, SPE J. 12:20 (1956).

    Google Scholar 

  15. B. H. Maddock, SPE J. 15:383 (1959).

    Google Scholar 

  16. Z. Tadmor, Polym. Eng. Sci. 6:185 (1966).

    Article  Google Scholar 

  17. J. T. Lindt, Polym. Eng. Sci. 25:585 (1985).

    Article  Google Scholar 

  18. J. F. Ingen Housz and H. E. H. Meijer, Polym. Eng. Sci. 21:352 (1981).

    Article  Google Scholar 

  19. C. Rauwendaal, Polym. Eng. Sci. 26:1245 (1986).

    Article  Google Scholar 

  20. B. Elbirli, J. T. Lindt, S. R. Gottgetreu and S. M. Baba, Polym. Eng. Sci. 23:86 (1983).

    Article  Google Scholar 

  21. J. F. Carley and J. M. McKelvey, Ind. Eng. Chem. 45:985 (1953).

    Google Scholar 

  22. C. Rauwendaal, Polym. Eng. Sci. 27:1065 (1987).

    Google Scholar 

  23. C. I. Chung, Polym. Eng. Sci. 24:626 (1984).

    Article  Google Scholar 

  24. B. H. Maddock, SPE J. 15:983 (1959).

    Google Scholar 

  25. D. G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusetts, 1973.

    Google Scholar 

  26. R. K. Mittal, V. B. Gupta and P. K. Sharma, Composites Sci. & Technology 31:295 (1988).

    Article  Google Scholar 

  27. J. M. Ottino and R. Chella, Polym. Eng. Sci. 23:357 (1983).

    Article  Google Scholar 

  28. L. Erwin, Polym. Eng. Sci. 18:572 (1978).

    Article  Google Scholar 

  29. L. Erwin and F. Mokhtarian, Polym. Eng. Sci. 23:49 (1983).

    Article  Google Scholar 

  30. J. A. Biesenberger, ed., Devolatilization of Polymers, Hanser Publications, New York, 1983.

    Google Scholar 

  31. K. Eise, H. Herrmann, S. Jakopin, U. Burkhardt and H. Werner, Adv. Plastics Tech. 1:18 (1981).

    Article  Google Scholar 

  32. R. J. Nichols, Modern Plastics, Sept. 1986, p. 90.

    Google Scholar 

  33. C. Rauwendaal, Polym. Eng. Sci. 21:1092 (1981).

    Article  Google Scholar 

  34. T. Sakai and N. Hashimoto, SPE (ANTEC) Tech. Papers 32:860 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Dealy, J.M., Wissbrun, K.F. (1990). Role of Rheology in Extrusion. In: Melt Rheology and Its Role in Plastics Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9738-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9738-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9740-7

  • Online ISBN: 978-1-4615-9738-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics