Skip to main content

Cytokines and Nociception

  • Chapter
Cytokines in the Nervous System

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

By far the majority of studies with cytokines relate to neuroendocrine functions, fever and sleep.1 Recently, however, the possibility of a role for cytokines in nociception has been explored. In particular the work of Watkins et al2,3 have studied central and peripheral involvement of IL-1β in nociception in depth. This chapter will attempt to review the literature relating to those cytokines (primarily IL-1β, IL-2, IL-6, TNF-α and NGF) for which there is some direct evidence for a role in nociception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothwell NJ. CNS Regulation of Thermogenesis. Crit Rev Neurobiol 1994; 8: 1–10.

    PubMed  CAS  Google Scholar 

  2. Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 1995; 63: 289–302.

    Article  PubMed  CAS  Google Scholar 

  3. Watkins LR, Maier SF, Goehler LE. Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci 1995; 57 (11): 1011–26.

    Article  PubMed  CAS  Google Scholar 

  4. Watkins LR, Wiertelak EP, Goehler Le et al. Characterization of cytokine-induced hyperalgesia. Brain Res 1994; 654: 15–26.

    Article  PubMed  CAS  Google Scholar 

  5. Oka T, Oka K, Hosoi M et al. Intracerebroventricular injection of interleukin-6 induces thermal hyperalgesia in rats. Brain Res 1995; 692 (l–2): 123–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sellami S, de Beaurepaire R. Hypothalamic and thalamic sites of action of interleukin-1 beta on food intake, body temperature and pain sensitivity in the rat. Brain Res 1995; 694: 69–77.

    Article  PubMed  CAS  Google Scholar 

  7. Walker K, Dray A, Perkins M. Hyperalgesia in rats following intracerebroventricular administration of endotoxin: Effect of bradykinin B1 and B2 receptor antagonist treatment. Pain 1996; In Press.

    Google Scholar 

  8. Bianchi M, Sacerdote P, Ricciardi Castagnoli P et al. Central effects of tumor necrosis factor alpha and interleukin-1 alpha on nociceptive thresholds and spontaneous locomotor activity. Neurosci Lett 1992; 148: 76–80.

    Article  PubMed  CAS  Google Scholar 

  9. Bianchi M, Panerai AE. CRH and the noradrenergic system mediate the antinociceptive effect of central interleukin-1 alpha in the rat. Brain Res Bull 1995; 36: 113–7.

    Article  PubMed  CAS  Google Scholar 

  10. Sacerdote P, Bianchi M, Ricciardi Castagnoli P et al. Tumor necrosis factor alpha and interleukin-1 alpha increase pain thresholds in the rat. Ann N Y Acad Sci 1992; 650: 197–201.

    Article  PubMed  CAS  Google Scholar 

  11. Oka T, Oka K, Hosoi M et al. The opposing effects of interleukin-1 beta microinjected into the preoptic hypothalamus and the ventromedial hypothalamus on nociceptive behavior in rats. Brain Res 1995; 700 (l–2): 271–8.

    Article  PubMed  CAS  Google Scholar 

  12. Adams JU, Bussiere JL, Geller EB, Adler MW. Pyrogenic doses of intracerebroventricular interleukin-1 did not induce analgesia in the rat hot-plate or cold-water tail-flick tests. Life Sci 1993; 53: 1401–9.

    Article  PubMed  CAS  Google Scholar 

  13. Haour F, Ban C, Marquette G et al. Brain interleukin-1 receptors: mapping, characterization and modulation. In: Rothwell NJ, Dantzer RD eds. Interleukin-1 in the Brain. Oxford: Pergamon Press, 1992; 13–25.

    Google Scholar 

  14. Farrar WL, Kilian PL, Ruff MR et al. Visualization and characterization of interleukin 1 receptors in brain. J Immunol 1987; 139: 459–63.

    PubMed  CAS  Google Scholar 

  15. Takao T, Tracey DE, Mitchell WM et al. Interleukin-1 receptors in mouse brain: characterization and neuronal localization. Endocrinology 1990; 127: 3070–8.

    Article  PubMed  CAS  Google Scholar 

  16. Haour FG, Ban EM, Milon GM et al. Brain interleukin-1 receptors: characterization and modulation after lipopolysaccharide injection. Progress in NeuroEndocrinlmmunology 1990; 3: 196–204.

    Google Scholar 

  17. Cunningham ET Jr, Wada E, Carter DB et al. In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse. J Neurosci 1992; 12: 1101–14.

    PubMed  CAS  Google Scholar 

  18. Yabuuchi K, Minami M, Katsumata S et al. Localization of type I interleukin-1 receptor mRNA in the rat brain. Brain Res Mol Brain Res 1994; 27: 27–36.

    Article  PubMed  CAS  Google Scholar 

  19. Ban EM, Sarlieve LL, Haour FG. Interleukin-1 binding sites on astrocytes. Neuroscience 1993; 52: 725–33.

    Article  PubMed  CAS  Google Scholar 

  20. Banks WA, Kastin AJ, Durham DA. Bidirectional transport of interleukin- 1 alpha across the blood-brain barrier. Brain Res Bull 1989; 23: 433–7.

    Article  PubMed  CAS  Google Scholar 

  21. Lechan RM, Toni R, Clark BD et al. Immunoreactive interleukin-1 beta localization in the rat forebrain. Brain Res 1990; 514: 135–40.

    Article  PubMed  CAS  Google Scholar 

  22. Schultzberg M. Location of interleukin-1 in the nervous system. In: Rothwell N, Dantzer RD, eds. Interleukin-1 in the Brain. Oxford: Pergamon Press, 1992; 1–11.

    Google Scholar 

  23. Breder CD, Dinarello CA, Saper CB. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 1988; 240: 321–4.

    Article  PubMed  CAS  Google Scholar 

  24. Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H. Regional and cellular codistribution of interleukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible relationship to the regulation of nerve growth factor synthesis. J Cell Biol 1990; 111: 1701–11.

    Article  PubMed  CAS  Google Scholar 

  25. Yabuuchi K, Minami M, Katsumata S et al. In situ hybridization study of interleukin-1 beta mRNA induced by kainic acid in the rat brain. Brain Res Mol Brain Res 1993; 20: 153–61.

    Article  PubMed  CAS  Google Scholar 

  26. Cavaillon JM. Cytokines and macrophages. Biomed Pharmacother 1994; 48 (10): 445–53.

    Article  PubMed  CAS  Google Scholar 

  27. Giulian D, Baker TJ, Shih LC et al. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 1986; 164: 594–604.

    Article  PubMed  CAS  Google Scholar 

  28. Fontana A, Kristensen F, Dubs R, et al. Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J Immunol 1982; 129: 2413–9.

    CAS  Google Scholar 

  29. Chung IY, Norris JG, Benveniste EN. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis- susceptible and - resistant rat strains. J Exp Med 1991; 173: 801–11.

    Article  PubMed  CAS  Google Scholar 

  30. Van Dam AM, Brouns M, Louisse S et al. Appearance of interleukin-1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of non-specific symptoms of sickness? Brain Res 1992; 588:291–6.

    Article  PubMed  Google Scholar 

  31. Brady LS, Lynn AB, Herkenham M, Gottesfeld Z. Systemic interleukin-1 induces early and late patterns of c-fos mRNA expression in brain. J Neurosci 1994; 14: 4951–64.

    PubMed  CAS  Google Scholar 

  32. Oka T, Aou S, Hori T. Intracerebroventricular injection of interleukin-1 beta enhances nociceptive neuronal responses of the trigeminal nucleus caudalis in rats. Brain Res 1994; 656: 236–44.

    Article  PubMed  CAS  Google Scholar 

  33. Palmer MR, Eriksdotter Nilsson M, Henschen A et al. Nerve growth factor-induced excitation of selected neurons in the brain which is blocked by a low-affinity receptor antibody. Exp Brain Res 1993; 93: 226–30.

    Article  PubMed  CAS  Google Scholar 

  34. Ebendal T. NGF in CNS: experimental data and clinical implications. Prog Growth Factor Res 1989; 1: 143–59.

    Article  PubMed  CAS  Google Scholar 

  35. Komaki G, Arimura A, Koves K. Effect of intravenous injection of IL-1 beta on PGE2 levels in several brain areas as determined by microdialysis. Am J Physiol 1992; 262: E246–51.

    PubMed  CAS  Google Scholar 

  36. Katsuura G, Gottschall PE, Dahl RR et al. Adrenocorticotropin release induced by intracerebroventricular injection of recombinant human interleukin-1 in rats: possible involvement of prostaglandin. Endocrinology 1988; 122: 1773–9.

    Article  PubMed  CAS  Google Scholar 

  37. Katsuura G, Gottschall PE, Dahl RR et al. Interleukin-1 beta increases prostaglandin E2 in rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology 1989; 124: 3125–7.

    Article  PubMed  CAS  Google Scholar 

  38. Bianchi M, Panerai AE. CRH and the noradrenergic system mediate the antinociceptive effect of central interleukin-1 alpha in the rat. Brain Res Bull 1995; 36: 113–7.

    Article  PubMed  CAS  Google Scholar 

  39. Ferreira SH, Lorenzetti BB, Bristow AF et al. Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 1988; 334: 698–700.

    Article  PubMed  CAS  Google Scholar 

  40. Cunha FQ, Poole S, Lorenzetti BB et al. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 1992; 107: 660–4.

    Article  PubMed  CAS  Google Scholar 

  41. Follenfant RL, Nakamura Craig M, Henderson B et al. Inhibition by neuropeptides of interleukin-1 beta-induced, prostaglandin-independent hyperalgesia. Br J Pharmacol 1989; 98: 41–3.

    Article  PubMed  CAS  Google Scholar 

  42. Davis AJ, Perkins MN. The involvement of bradykinin B1 and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in the rat. Br J Pharmacol 1994; 113: 63–8.

    Article  PubMed  CAS  Google Scholar 

  43. Perkins MN, Kelly D. Interleukin-1 beta induced-desArg9bradykinin-mediated thermal hyperalgesia in the rat. Neuropharmacology 1994; 33: 657–60.

    Article  PubMed  CAS  Google Scholar 

  44. Watkins LR, Goehler LE, Relton J et al. Mechanisms of tumor necrosis factor-alpha (tnf-alpha) hyperalgesia. Brain Res 1995; 692: 244–50.

    Article  PubMed  CAS  Google Scholar 

  45. Maier SF, Wiertelak EP, Martin D et al. Interleukin-1 mediates the behavioral hyperalgesia produced by lithium chloride and endotoxin. Brain Res 1993; 623: 321–4.

    Article  PubMed  CAS  Google Scholar 

  46. Perkins MN, Kelly D, Davis AJ. Bradykinin B-l and B-2 receptor mechanisms and cytokine- induced hyperalgesia in the rat. Can J Physiol Pharmacol 1995; 73: 832–6. 47.

    Google Scholar 

  47. Watkins LR, Wiertelak EP, Goehler et al. Neurocircuitry of illness-induced hyperalgesia. Brain Res 1994; 639: 283–99.

    Article  PubMed  CAS  Google Scholar 

  48. Cunha, FQ, Lorenzetti, BB, Poole S et al. Interleukin-8 as a mediator of sympathetic pain. Br J Pharmacol 1991; 104: 765–767.

    Article  PubMed  CAS  Google Scholar 

  49. Fukuoka H, Kawatani M, Hisamitsu T et al. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1 beta in the rat. Brain Res 1994; 657: 133–140.

    Article  PubMed  CAS  Google Scholar 

  50. Kelly DC, Ashgar AUR, McQueen DS et al. Effects of bradykinin and desArg9-bradykinin on afferent neural discharge in interleukin-1 p-treated knee joints. Br J Pharmacol 1996; 117: 90 P.

    Google Scholar 

  51. Kawatani M, Birder L. Interleukin-1 facilitates Ca2+ release in acutely dissociated dorsal root ganglion (DRG) cells of rat. Neurosci Abstr 1992; 18: 691 (Abstract).

    Google Scholar 

  52. Bathon JM, Croghan JC, MacGlashan DW Jr., Proud D. Bradykinin is a potent and relatively selective stimulus for cytosolic calcium elevation in human synovial cells. J Immunol 1994; 153 (6): 2600–8.

    PubMed  CAS  Google Scholar 

  53. Angel J, Audubert F, Bismuth G, Fournier C. IL-lb amplifies bradykinin-induced prostaglandin E2 production via a phospholipase D-Linked mechanism. J Immunol 1994; 152: 5032–40.

    PubMed  CAS  Google Scholar 

  54. Chanmugam P, Feng L, Liou S et al. Radicicol, a protein tyrosine kinase inhibitor, suppresses the expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide and in experimental glomerulonephritis. J Biol Chem 1995; 270: 5418–26.

    Article  PubMed  CAS  Google Scholar 

  55. Endo T, Ogushi F, Sone S, et al. Induction of cyclooxygenase-2 is responsible for interleukin-1 beta- dependent prostaglandin E2 synthesis by human lung fibroblasts. Am J Respir Cell Mol Biol 1995; 12: 358–65.

    PubMed  CAS  Google Scholar 

  56. Mitchell JA, Belvisi MG, Akarasereenont P et al. Induction of cyclooxygenase-2 by cytokines in human pulmonary epithelial cells: regulation by dexamethasone. Br J Pharmacol 1994; 113: 1008–14.

    Article  PubMed  CAS  Google Scholar 

  57. Arend WP. Interleukin-1 receptor antagonist. Advances in Immunology 1993; 54: 161–7.

    Article  Google Scholar 

  58. Dayer JM, Burger D. Interleukin–1, tumor necrosis factor and their specific inhibitors. Eur Cytokine Netw 1994; 5: 563–71.

    PubMed  CAS  Google Scholar 

  59. Colotta F, Re F, Muzio M et al. Interleukin-1 type II receptor: a decoy target for IL–1 that is regulated by IL–4. Science 1993; 261 (5120): 472–5.

    Article  PubMed  CAS  Google Scholar 

  60. Re F, Muzio M, De Rossi M et al. The type II “receptor” as a decoy target for interleukin-1 in polymorphonuclear leukocytes: Characterization of induction by dexamethasone and ligand binding properties of the released decoy receptor. J Exp Med 1994; 179: 739–43.

    Article  PubMed  CAS  Google Scholar 

  61. Schafer M, Carter L, Stein C. Interleukin 1 beta and corticotropin-releas- ing factor inhibit pain by releasing opioids from immune cells in inflamed tissue. Proc Natl Acad Sci USA 1994; 91: 4219–23.

    Article  PubMed  CAS  Google Scholar 

  62. Safieh-Garabedian B, Poole S, Allchorne A et al. Contribution of interleukin-1 beta to the inflammation- induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol 1995; 115: 1265–75.

    Article  PubMed  CAS  Google Scholar 

  63. Takahashi H. A mechanism for sciatic pain caused by lumbar disc herniation—involvement of inflammatory cytokines with sciatic pain. Nippon Seikeigeka Gakkai Zasshi 1995; 69: 17–29.

    PubMed  CAS  Google Scholar 

  64. Tilg H, Shapiro L, Atkins MB et al. Induction of circulating and eryth- rocyte-bound IL-8 by IL-2 immunotherapy and suppression of its in vitro production by IL-1 receptor antagonist and soluble tumor necrosis factor receptor (p75) chimera. J Immunol 1993; 151: 3299–307.

    PubMed  CAS  Google Scholar 

  65. Tilg H, Shapiro L, Vannier E et al. Induction of circulating antagonists to IL-1 and TNF by IL-2 administration and their effects on IL-2 induced cytokine production in vitro. J Immunol 1994; 152: 3189–98.

    PubMed  CAS  Google Scholar 

  66. Mier JW, Vachino G, Vander-Meer JW et al. Induction of circulating tumor necrosis factor (TNF alpha) as the mechanism for the febrile response to interleukin-2 (IL-2) in cancer patients. J Clin Immunol 1988; 8: 426–36.

    Article  PubMed  CAS  Google Scholar 

  67. Numerof RP, Aronson FR, Mier JW. IL-2 stimulates the production of IL-1 alpha and IL-1 beta by human peripheral blood mononuclear cells. J Immunol 1988; 141: 4250–7.

    PubMed  CAS  Google Scholar 

  68. Martin HA, Murphy PR. Interleukin-2 activates a sub-population of cutaneous C- fibre polymodal nociceptors in the rat hairy skin. Arch Physiol Biochem 1995; 103: 136–48.

    Article  PubMed  CAS  Google Scholar 

  69. Dinarello CA. The biological properties of interleukin-1. Eur Cytokine Netw 1994; 5: 517–31.

    PubMed  CAS  Google Scholar 

  70. Rankin EC, Choy EH, Kassimos D et al. The therapeutic effects of an engineered human anti-tumour necrosis factor alpha antibody (CDP571) in rheumatoid arthritis. Br J Rheumatol 1995; 34: 334–42.

    Article  PubMed  CAS  Google Scholar 

  71. Loetscher H, Gentz R, Zulauf M et al. Recombinant 55-kDa tumor necrosis factor (TNF) receptor. Stoichiometry of binding to TNF alpha and TNF beta and inhibition of TNF activity. J Biol Chem 1991; 266 (27): 18324–9.

    PubMed  CAS  Google Scholar 

  72. Otten U, Gadient RA. Neurotrophins and cytokines — intermediaries between the immune and nervous systems. Int J Dev Neurosci 1995; 13: 147–151.

    Article  PubMed  CAS  Google Scholar 

  73. Lewin GR, Mendell LM. Nerve growth factor and nociception. Trends Neurosci 1993; 16: 353–9.

    Article  PubMed  CAS  Google Scholar 

  74. Goedert M, Stoeckel K, Otten U. Biological importance of the retrograde axonal transport of nerve growth factor in sensory neurons. Proc Natl Acad Sci USA 1981; 78: 5895–8.

    Article  PubMed  CAS  Google Scholar 

  75. Lewin GR, Rueff A, Mendell LM. Peripheral and central mechanisms of ngf-induced hyperalgesia. Eur J Neurosci 1994; 6: 1903–12.

    Article  PubMed  CAS  Google Scholar 

  76. Andreev NY, Dimitrieva N, Koltzenburg M. Peripheral administration of nerve growth factor in the adult rat produces a thermal hyperalgesia that requires the presence of sympathetic post-ganglionic neurones. Pain 1995; 63:109–15.

    Google Scholar 

  77. Zurawski SM, Chomarat P, Djossou O et al. The primary binding sub-unit of the human interleukin-4 receptor is also a component of the interleukin-13 receptor. J Biol Chem 1995; 270: 13869–78.

    Article  PubMed  CAS  Google Scholar 

  78. Niiro H, Otsuka T, Tanabe T et al. Inhibition by interleukin-10 of inducible cyclooxygenase expression in lipopolysaccharide-stimulated monocytes: its underlying mechanism in comparison with interleukin-4. Blood 1995; 85: 3736–45.

    PubMed  CAS  Google Scholar 

  79. Seibert K, Zhang Y et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 1994; 91: 12013–7.

    Article  PubMed  CAS  Google Scholar 

  80. Masferrer JL, Zweifel BS, Manning PT et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci USA 1994; 91: 3228–32.

    Article  PubMed  CAS  Google Scholar 

  81. Tomlinson A, Appleton I, Moore AR, Gilroy DW, Willis D, Mitchell JA, Willoughby DA. Cyclo-oxygenase and nitric oxide synthase isoforms in rat carrageenin-induced pleurisy. Br J Pharmacol 1994; 113: 693–8.

    Article  PubMed  CAS  Google Scholar 

  82. Chomarat P, Vannier E, Dechanet J et al. Balance of IL-1 receptor antagonist/IL-1 beta in rheumatoid synovium and its regulation by IL-4 and IL-10. J Immunol 1995; 154: 1432–9.

    PubMed  CAS  Google Scholar 

  83. Donnelly RP, Fenton MJ, Kaufman JD et al. IL-1 expression isn human monocytes is transcriptionally and posttranscriptionally regulated by IL-4. J Immunol 1991; 146: 3431–6.

    PubMed  CAS  Google Scholar 

  84. Wang P, Wu P, Siegel MI, Egan RW et al. Interleukin (II)-10 inhibits nuclear factor kappa b (nf kappa b) activation in human monocytes— IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995; 270: 9558–63.

    Article  PubMed  CAS  Google Scholar 

  85. Dechanet J, Rissoan M, Banchereau J et al. Interleukin 4, but not interleukin 10, regulates the production of inflammation mediators by rheumatoid synoviocytes. Cytokine 1995; 7: 176–183.

    Article  PubMed  CAS  Google Scholar 

  86. Poole S, Cunha FQ, Selkirk S et al. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-10. Br J Pharmacol 1995; 115: 684–8.

    Article  PubMed  CAS  Google Scholar 

  87. Dray A, Perkins M. Bradykinin and inflammatory pain. Trends Neurosci 1993; 16: 99–104.

    Article  PubMed  CAS  Google Scholar 

  88. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992; 44 (1): 1–80.

    PubMed  CAS  Google Scholar 

  89. Correa CR, Calixto JB. Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol 1993; 110: 193–8.

    Article  PubMed  CAS  Google Scholar 

  90. Perkins MN, Campbell E, Dray A. Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, desArg9Leu8BK and Hoe 140, in two models of persistent hypealgesia in the rat. Pain 1993; 191–7.

    Google Scholar 

  91. Perkins MN, Kelly D. Induction of bradykinin B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 1993; 110: 1441–4.

    Article  PubMed  CAS  Google Scholar 

  92. Davis AJ, Perkins MN. Induction of B1 receptors in vivo in a model of persistent inflammatory mechanical hyperalgesia in the rat. Neuropharmacology 1994; 33 (1): 127–33.

    Article  PubMed  CAS  Google Scholar 

  93. Lerner UH, Modeer T. Bradykinin B] and B2 receptor agonists synergis- tically potentiate interleukin-1 -induced prostaglandin biosynthesis in human gingival fibroblasts. Inflammation 1991; 15: 427–36.

    Article  PubMed  CAS  Google Scholar 

  94. Galizzi JP, Bodinier MC, Chapelain B et al. Up-regulation of (3H)-des- Arg10-kallidin binding to the bradykinin Bi receptor by interleukin-1 beta in isolated smooth muscle cells: correlation with agonist-induced PGI2 production. Br J Pharmacol 1994; 113: 389–94.

    Article  PubMed  CAS  Google Scholar 

  95. Tiffany CW, Burch RM. Bradykinin stimulates tumor necrosis factor and interleukin-1 release from macrophages. FEBS Lett 1989; 247: 189–92.

    Article  PubMed  CAS  Google Scholar 

  96. Marceau F. Kinin B-l receptors: a review. Immunopharmacology 1995; 30: 1–26.

    Article  PubMed  CAS  Google Scholar 

  97. Perretti M, Solito E, Parente L. Evidence that endogenous interleukin-1 is involved in leukocyte migration in acute experimental inflammation in rats and mice. Agents Actions 1992; 35: 71–8.

    Article  PubMed  CAS  Google Scholar 

  98. Perretti M, Ahluwalia A, Flower RJ, Manzini S. Endogenous tachykinins play a role in IL-1-induced neutrophil accumulation—involvement of NK-1 receptors. Immunology 1993; 80: 73–7.

    PubMed  CAS  Google Scholar 

  99. Takano M, Yokoyama K, Yayama K et al. Murine fibroblasts synthesize and secrete kininogen in response to cyclic-amp, prostaglandin E(2) and tumor necrosis factor. Bba-Mol Cell Res 1995; 1265: 189–95.

    Google Scholar 

  100. Rueff A, Mendell LM. NGF-induced thermal hyperalgesia in adult rats involves the activation of bradykinin Bl receptors. Am Soc Neurosci 1994; Abs: 287. 2.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 R.G. Landes Company

About this chapter

Cite this chapter

Perkins, M.N., Davis, A.J. (1996). Cytokines and Nociception. In: Cytokines in the Nervous System. Neuroscience Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9695-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9695-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9697-4

  • Online ISBN: 978-1-4615-9695-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics