Skip to main content

Abstract

Plants face a common problem shared by all aerobic organisms. Molecular O2 is required to meet the energy demands of metabolism, but the necessary presence of O2 leads to the multifarious risks of oxidative damage due to the formation of activated forms of oxygen such as superoxide free radicals (O ·−2 ), H2O2, and hydroxyl radicals (·OH). The situation is particularly critical in plants because not only do plants have to tolerate atmospheric O2 but they have the additional burden of being oxygenic, thus insuring that the internal O2 concentration remains high in photosynthetic tissues. Indeed photosynthesis can be viewed as a very risky undertaking since large amounts of O2 are produced in the immediate vicinity (i.e., within chloroplasts) of a powerful oxidation-reduction system that can readily reduce O2 to O ·−2 . Since atmospheric O2 is derived from photosynthesis, it is perhaps poetic justice that the very organisms responsible for “polluting” the atmosphere with O2 should also be at high risk from the consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, S. (1992) Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects. Biochem. System. Ecol. 20, 269–296.

    Article  CAS  Google Scholar 

  • Alfafara, C.G., Kanda, A., Shioi, T., Shimzu, H., Shioya, S. and Susa, K. (1992) Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 36, 538–540.

    Article  CAS  Google Scholar 

  • Alscher, R.G. (1989) Biosynthesis and anitoxidant function of glutathione in plants. Physiol. Plant. 77, 457–464.

    Article  CAS  Google Scholar 

  • Anderson, I.C. and Robertson, D.S. (1960) Role of carotenoids in protecting chlorophyll from photodestruction. Plant Physiol. 35, 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.V., Hess, J.L. and Chevone, B.I. (1990) Purification, characterization, and immunological properties for two isoforms of glutathione reductase from eastern white pine needles. Plant Physiol. 94, 1402–1409.

    Article  PubMed  CAS  Google Scholar 

  • Aono, M., Kubo, A, Saji, H., Natori, T., Tanaka, K. and Kondo, N. (1991) Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol. 32, 691–697.

    CAS  Google Scholar 

  • Appleby, C.A. (1984) Leghemoglobin and Rhizobium respiration. Ann. Rev. Plant Physiol. 35, 443–478.

    Article  CAS  Google Scholar 

  • Arp, D.J. (1992) Hydrogen cycling in symbiotic bacteria. In Biological Nitrogen Fixation, ( G. Stacey, R.H. Burns and H.J. Evans, eds.), Chapman & Hall, New York, pp. 432–460.

    Google Scholar 

  • Arrigoni, O., Dipierro, S. and Borraccino, G. (1981) Ascorbate free radical reductase, a key enzyme of the ascorbic acid system. FEBS Lett. 125, 242–245.

    Article  CAS  Google Scholar 

  • Asada, K. (1992) Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85, 235–241.

    Article  CAS  Google Scholar 

  • Asada, K. and Takahashi, M. (1987) Production and scavenging of active oxygen in photosynthesis. In Photoinhibition ( D.J. Kyle, C.B. Osmond and C.J. Arntzen, eds.), Elsevier, New York, pp. 227–287.

    Google Scholar 

  • Aucoin, R.R., Fields, P., Lewis, M.A. Philogene, B.J.R. and Arnason, J.T. (1990) The protective effect of antioxidants to a phototoxin-sensitive insect herbivore. J. Chem. Ecol. 16, 2913–2924.

    Article  CAS  Google Scholar 

  • Aviram, I., Wittenberg, B.A. and Wittenberg, J.B. (1978) The reaction of ferrous leghemoglobin with hydrogen peroxide to form leghemoglobin (IV). J. Biol. Chem. 253, 5685–5689.

    PubMed  CAS  Google Scholar 

  • Bagchi, S.N., Ernst, A. and Bóger, P. (1991) The effect of activated oxygen species on nitrogenase of Anabaena variabilis. Z. Naturforsch. 46c, 407–415.

    CAS  Google Scholar 

  • Baker, D.D. and Mullin, B.C. (1992) Actinorhizal plants. In Biological Nitrogen Fixation, ( G. Stacey, R.H. Burns and H.J. Evans, eds.), Chapman & Hall, New York, pp. 259–292.

    Google Scholar 

  • Bannister, J.V., Bannister, W.H. and Rotilio, G. (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22, 111–180.

    Article  PubMed  CAS  Google Scholar 

  • Baszynski, T. (1974) The effect of α-tocopherol on reconstitution of photosystem I in heptane-extracted spinach chloroplasts. Biochim. Biophys. Acta 347, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Baum, J. A. and Scandalios, J.G. (1981) Isolation and characterization of the cytosolic and mitochondrial superoxide dismutases of maize. Arch. Biochem. Biophys. 206, 249–264.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp, C.O. and Fridovich, I. (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Becana, M., Aparicio-Tejo, P., Irigoyen, J.J. and Sanchez-Diaz, M. (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol. 82, 1169–1171.

    Article  PubMed  CAS  Google Scholar 

  • Becana, M., Paris, F.J., Sandalio, L.M. and Del Río, L.A. (1989) Isozymes of superoxide dismutase in nodules of Phaseolus vulgaris L., Pisum sativum L., and Vigna unguiculata (L.) Walp. Plant Physiol. 90, 1286–1291.

    Article  CAS  Google Scholar 

  • Becana, M. and Rodríguez-Barrueco, C. (1989) Protective mechanisms of nitrogenase against oxygen excess and partially-reduced oxygen intermediates. Physiol. Plant. 75, 429–438.

    Article  CAS  Google Scholar 

  • Becana, M. and Salin, M.L. (1989) Superoxide dismutases in nodules of leguminous plants. Can. J. Bot. 67, 415–421.

    Article  CAS  Google Scholar 

  • Bendich, A., Machlin, L.J. and Scandurra, O. (1986) The antioxidant role of vitamin C. Adv. Free Rad. Biol. Med. 2, 419–444.

    Article  CAS  Google Scholar 

  • Bergersen, F.J. (1982) Root Nodules of Legumes: Structure and Functions. Research Studies Press, Chichester.

    Google Scholar 

  • Bielawski, W. and Joy, K.W. (1986) Properties of glutathione reductase from chloroplasts and roots of pea. Phytochemistry. 25, 2261–2265.

    Article  CAS  Google Scholar 

  • Bienfait, H.F. and der Mark, V. (1983) Phytoferritin and its role in iron metabolism. In Metals and Micronutrients: Uptake and Utilization ( D.A. Robb and W.S. Pierpoint, eds.), Academic Press, London, pp. 111–123.

    Google Scholar 

  • Bisby, R.H., Ahmed, S. and Cundall, R.B. (1984) Repair of amino acid radicals by a vitamin E analogue. Biochem. Biophys. Res. Commun. 119, 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Black, C.C. (1973) Photosynthetic carbon fixation in relation to net C02 uptake. Ann. Rev. Plant Physiol. 24, 253–286.

    Article  CAS  Google Scholar 

  • Borraccino, G., Dipierro, S. and Arrigoni, O. (1986) Purification and properties of ascorbate free-radical reductase from potato tubers. Planta 167, 521–526.

    Article  CAS  Google Scholar 

  • Bosshard, H.R., Anni, H. and Yonetani, T. (1991) Yeast cytochrome c peroxidase. In Peroxidases in Chemistry and Biology, Vol. II ( J. Everse, K.E. Everse and M.B. Grisham, eds.), CRC Press, Boca Raton, FL, pp. 51–84.

    Google Scholar 

  • Boveris, A. (1978) Production of superoxide anion and hydrogen peroxide in yeast mitochondria. In Biochemistry and Genetics of Yeasts, ( M. Bacila, B.L. Horecker and A.O.M. Stoppani, eds.), Academic Press, New York, pp. 65–80.

    Google Scholar 

  • Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., Van Montagu, M. and Inze, D. (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10, 1723–1732.

    PubMed  CAS  Google Scholar 

  • Bowler, C., Van Montagu, M. and Inze, D. (1992) Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116.

    Article  CAS  Google Scholar 

  • Cadenas, E. (1989) Biochemistry of oxygen toxicity. Ann. Rev. Biochem. 58, 79–110.

    Article  PubMed  CAS  Google Scholar 

  • Caiola, M.G., Canini, A., Galiazzo, F. and Rotilio, G. (1991) Superoxide dismutase in vegetative cells, heterocysts and akinetes of Anabaena cylindrica Lemm. FEMS Microbiol Lett. 80, 161–166.

    Article  Google Scholar 

  • Campa, A. (1991) Biological roles of plant peroxidases: known and potential function. In Peroxidases in Chemistry and Biology, Vol. II ( J. Everse, K.E. Everse and M.B. Grisham, eds.), CRC Press, Boca Raton, FL, pp. 25–50.

    Google Scholar 

  • Cannon, R.E. and Scandalios, J.G. (1989) Two cDNAs encode two nearly identical Cu/Zn superoxide dismutases in maize. Mol. Gen. Genet. 219, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Cannon, R.E., White, J.A. and Scandalios, J.G. (1987) Cloning of cDNA for maize superoxide dismutase 2 (SOD-2). Proc. Natl. Acad. Sci. USA 84, 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Carri, M.T., Galiazzo, F., Ciriolo, M.R. and Rotilio, G. (1991) Evidence for coregulation of Cu,Zn superoxide dismutase and metallothionein gene expression in yeast through transcriptional control by copper via the ACE 1 factor. FEBS Lett. 278, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, E.W., Schwarz, O.J. and Hickok, L.G. (1988) Biochemical studies of para-quattolerant mutants of the fern Ceratopteris richardii. Plant Physiol. 87, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Chatfield, J.M.C. and Dalton, D.A. (1993) Ascorbate peroxidase from soybean root nodules. Plant Physiol. 103, 661–662.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G.-X. and Asada, K. (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30, 987–998.

    CAS  Google Scholar 

  • Chen, G.-X. and Asada, K. (1990) Hydroxyurea and p-aminophenol are the suicide inhibitors of ascorbate peroxidase. J. Biol. Chem. 265, 2775–2781.

    PubMed  CAS  Google Scholar 

  • Chen, G.-X., Sano, S. and Asada, K. (1992) The amino acid sequence of ascorbate peroxidase from tea has a high degree of homology to that of cytochrome c peroxidase from yeast. Plant Cell Physiol. 33, 109–116.

    CAS  Google Scholar 

  • Choudhary, A.D., Lamb, C.J. and Dixon, R.A. (1990) Stress response in alfalfa (Medicago sativa L.) VI. Differential responsiveness of chalcone synthase induction to fungal elicitor or glutathione in electroporated protoplasts. Plant Physiol. 94, 1802–1807.

    Article  PubMed  CAS  Google Scholar 

  • Connell, J.P. and Mullet, J.E. (1986) Pea chloroplast glutathione reductase: purification and characterization. Plant Physiol. 82, 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Creissen, G., Edwards, E.A., Enard, C., Wellburn, A. and Mullineaux, P. (1991) Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J. 2, 129–131.

    Google Scholar 

  • Dalton, D.A. (1990) Ascorbate peroxidase. In Peroxidases in Chemistry and Biology, Vol. II. Everse, K. Everse and M.B. Grisham, eds.), CRC Press, Boca Raton, FL, pp. 139–153.

    Google Scholar 

  • Dalton, D.A. (1993) Glutathione reductase from soybean root nodules. Plant Physiol. supplement 105, 839.

    Google Scholar 

  • Dalton, D.A., Baird, L., Langeberg, L., Taugher, C.Y., Anyan, W.R., Vance, C.P. and Sarath, G. (1993) Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules. Plant Physiol. 102, 481–489.

    PubMed  CAS  Google Scholar 

  • Dalton, D.A., Hanus, F.J., Russell, S.A. and Evans, H.J. (1987) Purification, properties and distribution of ascorbate peroxidase in legume root nodules. Plant Physiol. 83, 789–794.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, D.A., Langeberg, L. and Robbins, M. (1992) Purification and characterization of monodehydroascorbate reductase from soybean root nodules. Arch. Biochem. Biophys. 292, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, D.A., Langeberg, L. and Treneman, N. (1993) Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol. Plant. 87, 365–370.

    Article  CAS  Google Scholar 

  • Dalton, D.A., Post, C.J. and Langeberg, L. (1991) Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, ascorbate and associated enzymes in soybean root nodules. Plant Physiol. 96, 812–818.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A. and Evans, H.J. (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc. Natl. Acad. Sci. USA 83, 3811–3815.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020, 1–24.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. (1993) The xanthophyll cycle. In Antioxidants in Higher Plants ( R.G. Alscher and J.L. Hess, eds.), CRC Press, Boca Raton, FL. pp. 91–110.

    Google Scholar 

  • Denison, R.F., Weisz, P.R. and Sinclair, T.R. (1983) Analysis of acetylene reduction rates of soybean nodules at low acetylene concentrations. Plant Physiol. 73, 648–651.

    Article  PubMed  CAS  Google Scholar 

  • Devlin, W.S. and Gustine, D.L. (1992) Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol. 100, 1189–1195.

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P. and Thorpe, T.A. (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101.

    Article  CAS  Google Scholar 

  • Dipierro, S. and Borraccino, G. (1991) Dehydroascorbate reductase from potato tubers. Phytochem. 30, 427–429.

    Article  CAS  Google Scholar 

  • Dolphin, D., Poulson, R. and Avramovic, O. (1989) Glutathione, Coenzymes and Co-factors. John Wiley, New York.

    Google Scholar 

  • Edwards, E.A., Rawsthorne, S. and Mullineaux, P.M. (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180, 278–284.

    Article  CAS  Google Scholar 

  • Edwards, G. and Walker, D. (1983) C3, C4: Mechanisms, and cellular and environmental regulation, of photosynthesis. University of California Press, Berkeley.

    Google Scholar 

  • Edwards, R., Blount, J.W. and Dixon, R.A. (1991) Glutathione and elicitation of the phytoalexin response in legume cell cultures. Planta 184, 403–409.

    Article  CAS  Google Scholar 

  • Elstner, E.F. (1982) Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. 33, 73–96.

    Article  CAS  Google Scholar 

  • Epperlein, M.M., Noronha-Dutra, A.A. and Strange, R.N. (1986) Involvement of the hydroxyl radical in the abiotic elicitation of phytoalexins in legumes. Physiol. Mol. Plant Pathol. 28, 67–77.

    Article  CAS  Google Scholar 

  • Fahrenholtz, S.R., Doleiden, F.H., Trozzolo, A.M. and Lamola, A.A. (1974) Quenching of singlet oxygen by α-tocopherol. Photochem. Photobiol. 20, 505–509.

    Article  PubMed  CAS  Google Scholar 

  • Finzel, B.C., Poulos, T.L. and Kraut, J. (1984) Crystal structure of cytochrome c peroxidase refined at 1.7 Ångstrom resolution. J. Biol. Chem. 259, 13027–13036.

    PubMed  CAS  Google Scholar 

  • Foyer, C. (1984) Photosynthesis. John Wiley, New York.

    Google Scholar 

  • Foyer, C. (1993) Ascorbic acid. In Antioxidants in Higher Plants ( R.G. Alscher and J.L. Hess, eds.), CRC Press, Boca Raton, FL, pp. 31–58.

    Google Scholar 

  • Foyer, C.H. and Halliwell, B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133, 21–25.

    Article  Google Scholar 

  • Foyer, C.H. and Halliwell, B. (1977) Purification and properties of dehydroascorbate reductase from spinach leaves. Phytochem. 16, 1347–1350.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Lelandais, M., Galap, C. and Kunert, K.J. (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97, 863–872.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C., Rowell, J. and Walker, D. (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157, 239–244.

    Article  CAS  Google Scholar 

  • Fridovich, I. (1976) Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In Free Radicals in Biology, Vol. 1. ( W.A. Pryor, ed.), Academic Press, New York, pp. 239–277.

    Google Scholar 

  • Fridovich, I. (1979) Superoxide and superoxide dismutases. In Advances in Inorganic Biochemistry ( G.L. Eichhorn and L.G. Marzilli, eds.), Elsevier, New York, pp. 27–90.

    Google Scholar 

  • Fridovich, I. (1986) Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Fryer, M.J. (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell & Environ. 15, 381–392.

    Article  CAS  Google Scholar 

  • Fujiyama, K., Takemura, H., Shinmyo, A., Okada, H. and Takano, M. (1990) Genomic DNA structure of two new horseradish-peroxidase-encoding genes. Gene 89, 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa, K. and Gebicki, J.M. (1983) Oxidation of α-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl and superoxide free radicals. Arch. Biochem. Biophys. 226, 242–251.

    Article  PubMed  CAS  Google Scholar 

  • Gabig, T.G. and Babior, B.M. (1982) Oxygen-dependent microbial killing by neutrophils. In Superoxide Dismutase, Vol. II. ( L.W. Oberley, ed.), CRC Press, Boca Raton, FL, pp. 1–14.

    Google Scholar 

  • Gallon, J.R. (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol. 122, 571–609.

    Article  CAS  Google Scholar 

  • Glenn, J.K., Akileswaran, L and Gold, M.H. (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251, 688–696.

    Article  PubMed  CAS  Google Scholar 

  • Goltz, S., Kaput, J. and Blobel, G. (1982) Isolation of the yeast nuclear gene encoding the mitochondrial protein, cytochrome c peroxidase. J. Biol. Chem. 257, 11186–11190.

    PubMed  CAS  Google Scholar 

  • Graf, E. and Eaton, J.W. (1990) Antioxidant functions of phytic acid. Free Rad. Biol. Med. 8, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Graf, E., Empson, K.L. and Eaton, J.W. (1987) Phytic acid-a natural antioxidant. J. Biol. Chem. 262, 11647–11650.

    PubMed  CAS  Google Scholar 

  • Gralla, E.B., Thiele, D.J., Silar, P. and Valentine, J.S. (1991) ACE 1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc su-peroxide dismutase gene. Proc. Natl. Acad. Sci. USA 88, 8558–8562.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, E.M., Goscin, S.A. and Fridovich, I. (1974) Superoxide dismutase and oxygen toxicity in a eukaryote. J. Bact. 117, 456–460.

    PubMed  CAS  Google Scholar 

  • Griffith, O.W. (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Groden, D. and Beck, E. (1979) H2O2 destruction by ascorbate-dependent systems from chloroplasts. Biochim. Biophys. Acta 546, 426–435.

    Article  PubMed  CAS  Google Scholar 

  • Gross, G.G. (1979) Recent advances in the chemistry and biochemistry of lignin. Rec. Adv. Phytochem. 12, 177–220.

    Google Scholar 

  • Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J. and Allen, R.D. (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90, 1629–1633.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, J.M.C. and Halliwell, B. (1990) The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 15, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (1982a) Ascorbic acid and the illuminated chloroplast. In Ascorbic Acid: Chemistry, Metabolism, and Uses (P.A. Seib and B.M. Tolbert, eds.), Adv. in Chemistry Series 200, Am. Chem. Soc., Washington, DC, pp. 263–274.

    Google Scholar 

  • Halliwell, B. (1982b) The toxic effects of oxygen on plant tissues. In Superoxide Dismutase, Vol. I. ( L.W. Oberley, ed.), CRC Press, Boca Raton, FL, pp. 89–123.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1985) Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501–514.

    Article  PubMed  CAS  Google Scholar 

  • Harper, D.B. and Harvey, B.M.R. (1978) Mechanism of paraquat tolerance in perennial ryegrass. II. role of superoxide dismutase, catalase and peroxidase. Plant Cell Environ. 1, 211–215.

    Article  Google Scholar 

  • Hausladen, A. and Alscher, R.G. (1993) Glutathione. In Antioxidants in Higher Plants ( R.G. Alscher and J.L. Hess, eds.), CRC Press, Boca Raton, FL, pp. 1–30.

    Google Scholar 

  • Heath, R.L. and Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, S.K., Samson, G., Fork, D.C. and Laudenbach, D.E. (1992) Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. Proc. Natl. Acad. Sci. USA 89, 8716–8720.

    Article  PubMed  CAS  Google Scholar 

  • Herouart, D., Van Montagu, M. and Inze, D. (1993) Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc. Natl. Acad. Sci. USA 90, 3108–3112.

    Article  PubMed  CAS  Google Scholar 

  • Hess, J.L. (1993) Vitamin E, α-tocopherol. In Antioxidants in Higher Plants, ( R.G. Alscher and J.L. Hess, eds.), CRC Press, Boca Raton, FL, pp. 111–134.

    Google Scholar 

  • Hossain, M.A. and Asada, K. (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol. 25, 85–92.

    CAS  Google Scholar 

  • Hossain, M.A. and Asada, K. (1985) Monodehydroascorbate reductase from cucumber fruit is a flavin adenine dinucleotide enzyme. J. Biol. Chem. 260, 12920–12926.

    PubMed  CAS  Google Scholar 

  • Hossain, M.A., Nakano, Y. and Asada, K. (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol. 25, 385–395.

    CAS  Google Scholar 

  • Hrazdina G. and Wagner, G.J. (1985) Compartmentation of plant phenolic compounds; sites of synthesis and accumulation. Ann. Proc. Phytochem. Soc. Eur. 25, 119–133.

    Google Scholar 

  • Jackson, C., Dench, J., Moore, A.L., Halliwell, B., Foyer, C.H. and Hall, D.O. (1978) Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur. J. Biochem. 91, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Janero, D.R. (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue damage. Free Rad. Biol. Med. 9, 515–540.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, M.A.K., Shaaltiel, Y., Kazzes, D., Canaani, O., Malkin, S. and Gressel, J. (1989) Increased tolerance to photoinhibitory light in paraquat-resistance Conyza bonariensis measured by photoacoustic spectroscopy and 14CO2-fixation. Plant Physiol. 91, 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  • Ji, L., Becana, M. and Klucas, R.V. (1992) Involvement of molecular oxygen in the enzyme-catalyzed NADH oxidation and ferric leghemoglobin reduction. Plant Physiol. 100, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Ji, L., Wood, S., Becana, M. and Klucas, R.V. (1991) Purification and characterization of soybean root nodule ferric leghemoglobin reductase. Plant Physiol. 96, 32–37.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G.V., Evans, H.J. and Temay, C. (1966) Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiol. 41, 1330–1336.

    Article  PubMed  CAS  Google Scholar 

  • Kalt-Torres, W., Burke, J.J. and Anderson, J.M. (1984) Chloroplast glutathione reductase: purification and properties. Physiol. Plant. 61, 271–278.

    Article  CAS  Google Scholar 

  • Kanematsu, S. and Asada, K. (1990) Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail. Plant Cell Physiol 31, 99–112.

    CAS  Google Scholar 

  • Kaput, J., Goltz, S. and Blobel, G. (1982) Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. J. Biol. Chem. 257, 15054–15058.

    PubMed  CAS  Google Scholar 

  • Kasting, J.F. (1993) Earth’s early atmosphere. Science 259, 920–926.

    Article  PubMed  CAS  Google Scholar 

  • Kidambi, S.P., Mahan, J.R. and Matches, A.G. (1990) Purification and thermal dependence of glutathione reductase from two forage legume species. Plant Physiol 92, 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Klapheck, S. (1988) Homoglutathione: isolation, quantification and occurrence in legumes. Physiol Plant. 74, 727–732.

    Article  CAS  Google Scholar 

  • Klapheck, S., Chrost, B., Starke, J. and Zimmermann, H. (1992) 7-glutamylcysteinylserine—a new homologue of glutathione in plants of the family Poaceae. Bot. Acta. 105, 174–179.

    Google Scholar 

  • Ko, M.P., Huang, P.Y., Huang, J.S. and Barker, K.R. (1987) The occurrence of phytoferritin and its relationship to effectiveness of soybean nodules. Plant Physiol 83, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Krauth-Siegel, R.L., Enders, B., Henderson, G.B., Fairlamb, A.H. and Schirmer, R.H. (1987) Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur. J. Biochem. 164, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, A., Saji, H., Tanaka, K., Tanaka, K. and Kondo, N. (1992) Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Mol Biol 18, 691–701.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, A., Saji, H., Tanaka, K. and Kondo, N. (1993) Genomic DNA structure of a gene encoding cytosolic ascorbate peroxidase from Arabidopsis thaliana. FEBS Lett. 315, 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C.J., Lawton, M.A., Dron, M. and Dixon, R.A. (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Larson, R.A. (1988) The antioxidants of higher plants. Phytochemistry 27, 969–978.

    Article  CAS  Google Scholar 

  • Layzell, D.B. and Hunt, S. (1990) Oxygen and the regulation of nitrogen fixation in legume nodules. Physiol Plant. 80, 322–327.

    Article  CAS  Google Scholar 

  • Layzell, D.B., Hunt, S. and Palmer, G.R. (1990) The mechanism of nitrogenase inhibition in soybean nodules. Pulse-modulated spectroscopy indicates that nitrogenase activity is limited by oxygen. Plant Physiol 87, 296–299.

    Google Scholar 

  • Leech, R.M. and Murphy, D.J. (1976) The cooperative function of chloroplasts in the biosynthesis of small molecules. In The Intact Chloroplast ( J. Barber, ed.), Elsevier/North Holland, Amsterdam, pp. 365–401.

    Google Scholar 

  • Lesser, M.P. and Shick, J.M. (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the Zooxanthellae of Aiptasia pallida: primary production, photoinhibition and enzymatic defenses against oxygen toxicity. Marine Biol 102, 243–255.

    Article  Google Scholar 

  • Leung, H.-W., Vang, M.J. and Mavis, R.D. (1981) The cooperative interaction between vitamin E and\vitamin C in suppression of peroxidation of membrane phospholipids. Biochim. Biophys. Acta 664, 266–272.

    CAS  Google Scholar 

  • Lewis, N.G. (1993) Plant phenolics. In Antioxidants in Higher Plants ( R.G. Alscher and J.L. Hess, eds.), CRC Press, Boca Raton, FL, pp. 135–169.

    Google Scholar 

  • Loewus, F. (1980) L-ascorbic acid: metabolism, biosynthesis, function. In The Biochemistry of Plants, Vol. 3 ( P.K. Stumpf and E.E. Conn, eds.), Academic Press, New York, pp. 77–99.

    Google Scholar 

  • Loewus, F.A. and Loewus, M.W. (1987) Biosynthesis and metabolism of ascorbic acid in plants. CRC Crit. Rev. Plant Sci. 5, 101–119.

    Article  CAS  Google Scholar 

  • Loomis, W.D. (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods Enzymol. 31, 528–544.

    Article  PubMed  CAS  Google Scholar 

  • Lorimer, G.H. (1981) The carboxylation and oxygenation of ribulose-1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Ann. Rev. Plant Physiol. 32, 349–383.

    Article  CAS  Google Scholar 

  • Madamanchi, N.R., Anderson, J.V., Alscher, R.G., Cramer, C.L. and Hess, J.L. (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol. 100, 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Mahan, J.R. and Burke, J.J. (1987) Purification and characterization of glutathione reductase from corn mesophyll chloroplasts. Physiol. Plant. 71, 352–358.

    Article  CAS  Google Scholar 

  • Massey, V., Strickland, S., Mayhew, S.G., Howell, L.G., Engel, P.C., Matthews, R.G., Schuman, M. and Sullivan, P.A. (1969) The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem. Biophys. Res. Commun. 36, 891–897.

    Article  PubMed  CAS  Google Scholar 

  • Massey, V. and Wiliams C.H. (1965) On the reaction mechanism of yeast glutathione reductase. J. Biol. Chem. 240, 4470–4480.

    PubMed  CAS  Google Scholar 

  • McCay, P.B. and Powell, S.R. (1989) Relationship between glutathione and chemically induced lipid peroxidation. In Glutathione, Coenzymes and Cofactors ( D. Dolphin, R. Poulson and O. Avramovic, eds.), John Wiley, New York, pp. 111–151.

    Google Scholar 

  • Mehler, A.H. (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33, 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A. (1983) Glutathione. Ann. Rev. Biochem. 52, 711–760.

    Article  PubMed  CAS  Google Scholar 

  • Meister, A. (1983) Glutathione metabolism and its selective modification. J. Biol. Chem. 263, 17205–17208.

    Google Scholar 

  • Misra, H.P. and Fridovich, I. (1971) The generation of superoxide radical during the autoxidation of ferredoxin. J. Biol. Chem. 246, 6886–6890.

    PubMed  CAS  Google Scholar 

  • Mittler, R. and Tel-Or, E. (1991) Oxidative stress responses and shock proteins in the unicellular cyanobacterium Synechococcus R2 (PCC-7942). Arch. Microbiol. 155, 125–130.

    Article  CAS  Google Scholar 

  • Mittler, R. and Zilinskas, B.A. (1991a) Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 97, 962–968.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R. and Zilinskas, B.A. (1991b) Molecular cloning and nucleotide sequence analysis of a cDNA encoding pea cytosolic ascorbate peroxidase. FEBS Lett. 289, 257–259.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R. and Zilinskas, B.A. (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J. Biol. Chem. 267, 21802–21807.

    PubMed  CAS  Google Scholar 

  • Miyake, C., Michihata, F. and Asada, K. (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol. 32, 33–43.

    CAS  Google Scholar 

  • Mortensen, L.E., Walker, M.N. and Walker, G.A. (1974) Effect of magnesium di- and triphosphates on the structure and electron transport function of the components of clostridial nitrogenase. In Proceedings of the first International Symposium on Nitrogen Fixation (W.E. Newton and C.J. Nyman, eds.), Washington State Univ. Press, Pullman, pp. 117–149.

    Google Scholar 

  • Murakawa, S., Sano, S., Yamashita, H. and Takahashi, T. (1977) Biosynthesis of Derythroascorbic acid by Candida. Agric. Biol. Chem. 41, 1799–1806.

    Article  CAS  Google Scholar 

  • Nakano, Y. and Asada, K. (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28, 131–140.

    CAS  Google Scholar 

  • Neeley, W.C., Martin, J.M. and Barker, S.A. (1988) Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem. Photobiol. 48, 423–428.

    Article  Google Scholar 

  • Nick, J.A., Leung, C.T. and Loewus, F.A. (1986) Isolation and identification of erythroascorbic acid in Saccharomyces cerevisiae and Lypomyces starkeyi. Plant Sci. 46, 181–187.

    Article  CAS  Google Scholar 

  • Niki, E., Tsuchiya, J., Tanimura, R. and Kamiya, Y. (1982) Regeneration of vitamin E from α-chromanoxyl radical by glutathione and vitamin C. Chem. Lett. 6, 789–792.

    Article  Google Scholar 

  • Nishikimi, M. (1975) Oxidation of ascorbic acid with superoxide ion generated by the xanthine-xanthine oxidase system. Biochem. Biophys. Res. Commun. 63, 463–468.

    Article  PubMed  CAS  Google Scholar 

  • Nishikimi, M., Yamada, H. and Yagi, K. (1980) Oxidation by superoxide of tocopherols dispersed in aqueous media with deoxycholate. Biochim. Biophys. Acta 627, 101–108.

    CAS  Google Scholar 

  • Ogren, W.L. (1984) Photorespiration; pathways, regulation, and modification. Ann. Rev. Plant Physiol. 35, 415–442.

    Article  CAS  Google Scholar 

  • Packer, J.E., Slater, T.F. and Wilson, R.L. (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278, 737–738.

    Article  PubMed  CAS  Google Scholar 

  • Pallett, K.E. and Young, A.J. (1993) Carotenoids. In Antioxidants in Higher Plants ( R.G. Alscher and J.L. Hess, eds.), CRC Press, Boca Raton, FL, pp. 59–89.

    Google Scholar 

  • Pierpoint, W.S. (1985) Phenolics in food and feedstuffs: the pleasures and perils of vegetarianism. Ann. Proc. Phytochem. Soc. Eur. 25, 427–451.

    Google Scholar 

  • Pitcher, L.H., Brennan, E., Hurley, A., Dunsmuir, P., Tepperman, J.M. and Zilinskas, B.A. (1991) Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 97, 452–455.

    Article  PubMed  CAS  Google Scholar 

  • Postgate, J.R. (1982) The Fundamentals of Nitrogen Fixation. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Poulos, T.L., Freer, S.T., Alden, R.A., Edwards, S.L., Skogland, U., Takio, K., Eriksson, B., Xuong, N.H., Yonetani, T. and Kraut, J. (1980) The crystal structure of cytochrome c peroxidase. J. Biol. Chem. 255, 575–580.

    PubMed  CAS  Google Scholar 

  • Puppo, A., Dimitrijevic, L. and Rigaud, J. (1982) Possible involvement of nodule superoxide dismutase and catalase in leghemoglobin protection. Planta 156, 374–379.

    Article  CAS  Google Scholar 

  • Puppo, A. and Halliwell, B. (1988) Generation of hydroxyl radicals by soybean nodule leghaemoglobin. Planta 173, 405–410.

    Article  CAS  Google Scholar 

  • Puppo, A., Herrada, G. and Rigaud, J. (1991) Lipid peroxidation in peribacteroid membranes from french-bean nodules. Plant Physiol. 96, 826–830.

    Article  PubMed  CAS  Google Scholar 

  • Puppo, A., Monny, C. and Davies, M.J. (1993) Glutathione-dependent conversion of ferryl leghaemoglobin into the ferric form: a potential protective process in soybean (Glycine max) root nodules. Biochem. J. 289, 435–438.

    PubMed  CAS  Google Scholar 

  • Puppo, A. and Rigaud, J. (1986) Superoxide dismutase: an essential role in the protection of the nitrogen fixation process? FEBS Letters 210, 187–189.

    Article  Google Scholar 

  • Puppo, A., Rigaud, J., Job, D., Ricard, J. and Zeba, B. (1980) Peroxidase content of soybean root nodules. Biochim. Biophys. Acta 614, 303–312.

    PubMed  CAS  Google Scholar 

  • Puppo, A., Rigaud, J. and Job, D. (1981) Role of superoxide anion in leghemoglobin autoxidation. Plant Sci. Lett. 22, 353–360.

    Article  CAS  Google Scholar 

  • Rabinowitch, H.D. and Fridovich, I. (1983) Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 37, 679–690.

    Article  CAS  Google Scholar 

  • Rennenberg, H. (1982) Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21, 2771–2781.

    Article  CAS  Google Scholar 

  • Rich, P.R. and Bonner, W.D. (1978) The sites of superoxide anion generation in higher plant mitochondria. Arch. Biochem. Biophys. 188, 206–213.

    Article  PubMed  CAS  Google Scholar 

  • Robson, R.L. and Postgate, J.R. (1980) Oxygen and hydrogen in biological nitrogen fixation. Ann. Rev. Microbiol. 34, 183–207.

    Article  CAS  Google Scholar 

  • Salin, M.L. (1988) Plant superoxide dismutases: a means of coping with oxygen radicals. Curr. Top. Plant Biochem. Physiol. 7, 188–200.

    Google Scholar 

  • Sano, S. and Asada, K. (1992) Molecular properties of monodehydroascorbate reductase. In Research in Photosynthesis, Vol IV ( N. Murata, ed.), Kluwer, Dordrecht, Netherlands, pp. 533–536.

    Google Scholar 

  • Scandalios, J.G. (1990) Response of plant antioxidant defense genes to environmental stress. Adv. Gene. 28, 1–41.

    Article  CAS  Google Scholar 

  • Schirmer, R.H., Krauth-Siegel, R.L. and Schulz, G.E. (1989) Glutathione reductase. In Glutathione: Biochemical & Medical Aspects, Part A ( D. Dolphin, R. Poulson and O. Avramovic, eds.), John Wiley, New York, pp. 554–596.

    Google Scholar 

  • Schneider, K. and Schlegel, H.G. (1981) Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16. Biochem. J. 193, 99–107.

    PubMed  CAS  Google Scholar 

  • Schubert, K.R. (1982) The Energetics of Biological Nitrogen Fixation. Workshop Summary. Amer. Soc. Plant Physiol., Rockville, MD.

    Google Scholar 

  • Schubert, K.R. (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport, and metabolism. Ann. Rev. Plant Physiol. 37, 539–574.

    Article  CAS  Google Scholar 

  • Schulze, A.U., Schott, H.M. and Staudinger, H. (1972) Isolierung und charakterisierung einer NADH: semidehydroascorbinsaure-oxidoreduktase aus Neurospora crassa (E.C. 1.6.5.4). Hoppe-Seyler’s Z. Physiol. Chem. 353, 1931–1942.

    Article  PubMed  CAS  Google Scholar 

  • Scott, M.D., Meshnick, S.R. and Eaton, J.W. (1987) Superoxide dismutase-rich bateria. Paradoxical increase in oxidant toxicity. J. Biol. Chem. 262, 3640–3645.

    PubMed  CAS  Google Scholar 

  • Seckback, J. (1982) Ferreting out the secrets of plant ferritin. A review. J. Plant Nutr. 5, 369–394.

    Article  CAS  Google Scholar 

  • Seel, W.E., Hendry, G.A.F. and Lee, J.A. (1992) Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. J. Exp. Bot. 43, 1031–1037.

    Article  CAS  Google Scholar 

  • Serrano, A., Rivas, J. and Losada, M. (1984) Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119. J. Bacteriol. 158, 317–324.

    PubMed  CAS  Google Scholar 

  • Shaaltiel, Y. and Gressel, J. (1986) Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conya bonariensis. Pesticide Biochem. Physiol. 26, 22–28.

    Article  CAS  Google Scholar 

  • Sheehy, J.E. (1987) Photosynthesis and nitrogen fixation in legume plants. CRC Crit. Rev. Plant Sci. 5, 121–159.

    Article  CAS  Google Scholar 

  • Shigeoka, S., Nakano, Y. and Kitaoka, S. (1980) Purification and some properties of L-ascorbic acid-specific peroxidase in Euglena gracilis z. Arch. Biochem. Biophys. 201, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka, S., Onishi, T., Nakano, Y. and Kitaoka, S. (1987) Characterization and physiological function of glutathione reductase in Euglena gracilis z. Biochem J. 242, 511–515.

    PubMed  CAS  Google Scholar 

  • Shigeoka, S., Yasumoto, R., Onishi, T., Nakano, Y. and Kitaoka, S. (1987) Properties of monodehydroascorbate reductase and dehydroascorbate reductase and their participation in the regeneration of ascorbate in Euglena gracilis z. J. Gen. Microbiol. 133, 227–232.

    CAS  Google Scholar 

  • Siedow, J.N. (1982) The nature of the cyanide-resistant pathway in plant mitochondria. In Recent Advances in Phytochemistry ( L.L. Creasy and G. Hrazdina, eds.), Plenum Press, New York, pp. 47–83.

    Google Scholar 

  • Siedow, J.N. (1991) Plant lipoxygenase: structure and function. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 145–188.

    Article  CAS  Google Scholar 

  • Siefermann-Harms, D. (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim. Biophys. Acta 811, 325–335.

    CAS  Google Scholar 

  • Sinclair, T.R., Weisz, P.R. and Denison, R.F. (1985) Oxygen limitation to nitrogen fixation in soybean nodules. In World Soybean Research Conference III: Proceedings ( R. Shibles, ed.), Westview Press, Boulder, CO, pp. 797–805.

    Google Scholar 

  • Smith, I.K., Vierheller, T.L. and Thorne, C.A. (1989) Properties and functions of glutathione reductase in plants. Physiol. Plant. 77, 449–456.

    Article  CAS  Google Scholar 

  • Smith, J. and Shrift, A. (1979) Phylogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 63B, 39–44.

    Article  CAS  Google Scholar 

  • Sprent, J.I. and Sprent, P. (1990) Nitrogen Fixing Organisms: Pure and Applied Aspects. Chapman and Hall, London.

    Book  Google Scholar 

  • Steinman, H.M. (1982) Superoxide dismutases: protein chemistry and structure-function relationships. In Superoxide Dismutase Vol. I ( L.W. Oberley, ed.), CRC Press, Boca Raton, FL, pp. 11–68.

    Google Scholar 

  • Stonier, T., Stasions, S. and Reddy, K.B.S.M. (1979) The masking of peroxidase-catalyzed oxidation of IAA in Vigna. Phytochem. 18, 25–28.

    Article  CAS  Google Scholar 

  • Stowers, M.D. and Elkan, G.H. (1981) An inducible iron-containing superoxide dismutase in Rhizobium japonicum. Can. J. Microbiol. 27, 1202–1208.

    Article  CAS  Google Scholar 

  • Takahashi, T., Yamashita, H., Kato, E., Mitsumoto, M. and Murakawa, S. (1976) Purification and some properties of D-glucono-7-lactone dehydrogenase. D-erythorbic acid producing enzyme of Penicillium cyaneofulvum. Agric. Biol. Chem. 40, 121–129.

    Article  CAS  Google Scholar 

  • Takio, K., Titani, K., Ericsson, L.H. and Yonetani, T. (1980) Primary structure of yeast cytochrome c peroxidase. II. The complete amino acid sequence. Arch. Biochem. Biophys. 203, 615–629.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Takeuchi, E., Kubo, A., Sakaki, T., Haraguchi, K. and Kawamura, Y. (1991) Two immunologically different isozymes of ascorbate peroxidase from spinach leaves. Arch. Biochem. Biophys. 286, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X. and Webb, M. A. (1993) Cloning and characterization of cDNAs encoding glutathione reductase from soybean root nodules. In New Horizons in Nitrogen Fixation (R. Palacios, J. Mora and W. E. Newton, eds. ), Kluwer Academic, Dordrecht, p. 374.

    Google Scholar 

  • Tel-Or, E., Huflejt, M. and Packer, L., (1985) The role of glutathione and ascorbate in hydroperoxide removal in cyanobacteria. Biochem. Biophys. Res. Comm. 132, 533–539.

    Article  CAS  Google Scholar 

  • Tel-Or, E., Huflejt, M. E. and Packer, L., (1986) Hydroperoxide metabolism in cyanobacteria. Arch. Biochem. Biophys. 246, 396–402.

    Article  CAS  Google Scholar 

  • Tepperman, J.M. and Duinsmuir, P. (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14, 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, S.S. and Bjorkman, O. (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosyn. Res. 23, 331–343.

    Article  CAS  Google Scholar 

  • Ting, I.P. (1985) Crassulacean acid metabolism. Ann. Rev. Plant Physiol. 36, 595–622.

    Article  CAS  Google Scholar 

  • Tjepkema, J.D., Schwintzer, C.R. and Benson, D.R. (1986) Physiology of actinorhizal nodules. Ann. Rev. Plant Physiol. 37, 209–232.

    Article  CAS  Google Scholar 

  • Tjepkema, J.C. and Yocum, C.W. (1974) Measurement of oxygen partial pressure within soybean nodules by oxygen micro-electrodes. Planta 119, 351–360.

    Article  Google Scholar 

  • Tolbert, B.M. and Ward, J.B. (1982) Dehydroascorbic acid. In Ascorbic Acid: Chemistry, Metabolism, and Uses (P.A. Seib and B.M. Tolbert, eds.), Adv. in Chem. Ser. 200. Am. Chem. Soc. Washington, DC, pp. 81–100.

    Chapter  Google Scholar 

  • Toztim, S.R.D. and Gallon, J.R. (1979) The effects of methyl viologen on Gleocapsa sp. LB795 and their relationship to the inhibition of acetylene reduction (nitrogen fixation) by oxygen. J. Gen. Microbiol. 111, 313–326.

    Google Scholar 

  • Tsai, Y.-C., Yang, T.-Y., Cheng, S.-W., Li, S.-N. and Wang, Y.-J. (1991) High yield extraction and purification of glutathione reductase from baker’s yeast. Prep. Biochem. 21, 175–185.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, E.W.T., Bowler, C., Herouart, D., Van Camp, W., Villarroel, R., Genetello, C., Van Montagu, M. and Irke, D. (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3, 783–792.

    Article  PubMed  CAS  Google Scholar 

  • Van Camp, W., Bowler, C., Villarroel, R., Tsang, E.W.T., Van Montagu, M. and Inze, D. (1990) Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 9903–9907.

    Article  PubMed  Google Scholar 

  • Van den Bosch, K.A. and Newcomb, E.H. (1986) Immunogold localization of nodule-specific uricase in developing soybean root nodules. Planta 167, 425–36.

    Article  Google Scholar 

  • Vera-Estrella, R., Blumwald, E. and Higgins, V.J. (1992) Effect of specific elicitors of Cladosporium fulvum on tomato suspension cells. Plant Physiol. 99, 1208–1215.

    Article  PubMed  CAS  Google Scholar 

  • Verduyn, C., van Wijngaarden, C.J., Scheffers, W.A. and van Dijken, J.P. (1991) Hydrogen peroxide as an electron acceptor for mitochondrial respiration in the yeast Hansenula polymorpha. Yeast 7, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Vivekanadan, M. and Edwards, G.E. (1987) Activation of NADP-malate dehydrogenase in C3 plants by reduced glutathione. Photosyn. Res. 14, 113–124.

    Article  Google Scholar 

  • Weisz, P.R., Denison, R.F. and Sinclair, T.R. (1985) Response to drought stress of nitrogen fixation (acetylene reduction) rates by field-grown soybeans. Plant Physiol. 78, 525–530.

    Article  PubMed  CAS  Google Scholar 

  • White, J. A. and Scandalios, J.G. (1988) Isolation and characterization of a cDNA for mitochondrial manganese superoxide dismutase (SOD-3) of maize and its relation to other manganese superoxide dismutases. Biochim. Biophys. Acta 951, 61–70.

    PubMed  CAS  Google Scholar 

  • Williams, C.H. (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mecuric ion reductase—a family of flavoenzyme transhydrogenases. In Chemistry and Biochemistry of Flavoenzymes, Vol. III ( F. Müller, ed.), CRC Press, Boca Raton, FL, pp. 121–211.

    Google Scholar 

  • Williams, P.G. and Stewart, P.R. (1976) The intramitochondrial location of cytochrome c peroxidase in wild-type and petite Saccharomyces cerevisiae. Arch. Microbiol. 107, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Wingate, V.P.M., Lawton, M.A. and Lamb, C.J. (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 87, 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Wingsle, G. (1989) Purification and characterization of glutathione reductase from Scots pine needles. Physiol. Plant. 76, 24–30.

    Article  CAS  Google Scholar 

  • Wise, R.R. and Naylor, A.W. (1987) Chilling-enhanced photooxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol. 83, 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Yagi, K. (1982) Lipid Peroxides in Biology and Medicine. Academic Press, New York.

    Google Scholar 

  • Yamada, T., Hashimoto, H., Shiraishi, T. and Oku, H. (1989) Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycosphaerella pinodes. Mol. Plant. Microb. Interact. 2, 256–261.

    Article  Google Scholar 

  • Yamauchi, N., Yamawaki, K., Ueda, Y. and Chachin, K. (1984) Subcellular localization of redox enzymes involving ascorbic acid in cucumber fruit. J. Jpn. Soc. Hort. Sci. 53, 347–353.

    Article  CAS  Google Scholar 

  • Yokota, A., Shigeoka, S., Onishi, T. and Kitaoka, S. (1988) Selenium as inducer of glutathione peroxidase in low-CO2-grown Chlamydomonas reinhardtii. Plant Physiol. 86, 649–651.

    Article  PubMed  CAS  Google Scholar 

  • Yonetani, T. (1976) Cytochrome c peroxidase. In The Enzymes, Vol. XIII ( P.D. Boyer, ed.), Academic Press, New York, pp. 345–361.

    Chapter  Google Scholar 

  • Young, J. A. (1991) The protective role of carotenoids in higher plants. Physiol. Plant. 83, 702–708.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Dalton, D.A. (1995). Antioxidant Defenses of Plants and Fungi. In: Ahmad, S. (eds) Oxidative Stress and Antioxidant Defenses in Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9689-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9689-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9691-2

  • Online ISBN: 978-1-4615-9689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics