Skip to main content

Antioxidant Defenses of Escherichia coli and Salmonella typhimurium

  • Chapter
Oxidative Stress and Antioxidant Defenses in Biology

Abstract

Single celled organisms like bacteria encounter the same kinds of complex problems that their multicellular counterparts must deal with. Conditions that cause stress to bacterial cells take many forms—fluctuations in environmental temperature or pH, or exposure to toxic chemicals or radiation. The use of oxygen during aerobic respiration creates special problems for bacterial cells. A buildup in reactive oxygen species (ROS) within cells or in a cell’s environment may lead to genotoxic or cytotoxic alterations in cellular DNA, RNA, lipids or protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Au, K.G., Cabrera, M., Miller, J.H. and Modrich, P. (1988) Escheria coli mutY gene product is required for specific AG—CG mismatch correction. Proc. Natl. Acad. Sci. USA 85, 9163–9166.

    Article  PubMed  CAS  Google Scholar 

  • Au, K.G., Clark, S., Miller, J.H. and Modrich, P. (1989) Escherichia coli mutY gene encodes an adenine glycosylase active on GA mispairs. Proc. Natl. Acad. Sci. USA 86, 8877–8881.

    Article  PubMed  CAS  Google Scholar 

  • Bernelot-Moens, C. and Demple, B. (1989) Multiple DNA repair activities for 3’-deoxyribose fragments in Escherichia coli. Nucleic Acids Res. 17, 587–600.

    Article  PubMed  CAS  Google Scholar 

  • Beutler, E. and Yoshida, A. (1988) Genetic variation of glucose-6-phosphate dehydrogenase: a catalog and future prospects. Medicine 67, 311–334.

    Article  PubMed  CAS  Google Scholar 

  • Boiteux, S., Gajewski, E., Laval, J. and Dizdaroglu, M. (1992) Substrate specificity of the Escherichia coli FPG protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry 31, 106–110.

    Article  PubMed  CAS  Google Scholar 

  • Boiteux, S., O’Connor, T.R., Lederer, F., Gouyette, A. and Laval, J. Homogeneous Escherichia coli FPG protein: a DNA glycosylase which excises imidazole ring-open purines and nicks DNA at apurinic sites. J. Biol. Chem. 265, 3916–3922.

    Google Scholar 

  • Boorstein, R.J., Hilbert, T.P., Cadet, J., Cunningham, R.P. and Teebor, G.W. (1989) UV-induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Biochemistry 28, 6164–6170.

    Article  PubMed  CAS  Google Scholar 

  • Breimer, L.H. and Lindahl, T. (1984) Excision of oxidized thymine from DNA. J. Biol Chem. 259, 5543–5548.

    PubMed  CAS  Google Scholar 

  • Breimer, L.H. and Lindahl, T. (1985) Thymine lesions produced by ionizing radiation in double-stranded DNA. Biochemistry 24, 4018–4022 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Budrene, E.O. and Berg, H.C. (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630–633.

    Article  PubMed  CAS  Google Scholar 

  • Carlioz, A. and Touati, D. (1986) Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5, 623–630.

    PubMed  CAS  Google Scholar 

  • Carlsson, J. and Carpenter, V.S. (1980) The recA + gene product is more important than catalase and superoxide dismutase in protecting Escherichia coli against hydrogen peroxide toxicity. J. Bacteriol. 142, 319–321.

    PubMed  CAS  Google Scholar 

  • Christman, M.F., Morgan, R.W., Jacobson, F.S. and Ames, B.N. (1985) Positive control of a regulon for defenses against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell 41, 753–762.

    Article  PubMed  CAS  Google Scholar 

  • Cox, E.C. (1970) Mutator gene action and the replication of bacteriophage X DNA. J. Mol. Biol. 50, 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Cudd, A. and Fridovich, I. (1982) Electrostatic interactions in the reaction mechanism of bovine erythrocyte superoxide dismutase. J. Biol. Chem. 257, 11443–11447.

    PubMed  CAS  Google Scholar 

  • Cunningham, R.P., Saporito, S.M., Spitzer, S.G. and Weiss, B. (1986) Endonuclease IV (nfo) mutant of Escherichia coli. J. Bacteriol. 168, 1120–1127.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A. (1986) Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis. J. Free Rad. Biol. Med. 2, 155–173.

    Article  CAS  Google Scholar 

  • Davies, K.J.A. and Lin, S.W. (1988a) Degradation of oxidatively denatured proteins in Escherichia coli. Free Rad. Biol. Med. 5, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Davies, K.J.A. and Lin, S.W. (1988b) Oxidatively denatured proteins are degraded by an ATP-independent proteolytic pathway in Escherichia coli. Free Rad. Biol. Med. 5, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Demple, B., Johnson, A. and Fung, D. (1986) Exonuclease III and endonuclease IV remove 3’ blocks from DNA synthesis primers in H202-damaged Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 7731–7735.

    Article  PubMed  CAS  Google Scholar 

  • Demple, B. and Linn, S. (1982) On the recognition and cleavage mechanism of Escherichia coli endodeoxyribonuclease V, a possible DNA repair enzyme. J. Biol. Chem. 257, 2848–2855.

    PubMed  CAS  Google Scholar 

  • Dills, S.S., Apperson, A., Schmidt, M.R. and Saier, M.H. (1988) Carbohydrate transport in bacteria. Microbiol. Rev. 44, 385–418.

    Google Scholar 

  • Dizdaroglu, M. (1985) Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution. Biochemistry 24, 4476–4481.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, P.W., Heiland, D.E. and Haseltine, W.A. (1986) Mechanism of action of a mammalian DNA repair enzyme. Biochemistry 25, 2212–2220.

    Article  PubMed  CAS  Google Scholar 

  • Farr, S.B., D’Ari, R. and Touati, D. (1986) Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc. Natl. Acad. Sci. USA 83, 8268–8272.

    Article  PubMed  CAS  Google Scholar 

  • Farr, S.B. and Kogoma, T. (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55, 561–585.

    PubMed  CAS  Google Scholar 

  • Farr, S.B., Touati, D. and Kogoma, T. (1988) Effects of oxygen stress on membrane function in Escherichia coli. J. Bacteriol 170, 1837–1842.

    PubMed  CAS  Google Scholar 

  • Franklin, W.A. and Lindahl, T. (1988) DNA deoxyribophosphodiesterase. EMBO J. 7, 3617–3622.

    PubMed  CAS  Google Scholar 

  • Fridovich, I. (1989) Superoxide dismutases. J. Biol. Chem. 264, 7761–7764.

    PubMed  CAS  Google Scholar 

  • Gardner, P. and Fridovich, I. (1991) Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J. Biol. Chem. 266, 1478–1483.

    PubMed  CAS  Google Scholar 

  • Gates, F.T. and Linn, S. (1977) Endonuclease V of Escherichia coli. J. Biol. Chem. 252, 1647–1653.

    PubMed  CAS  Google Scholar 

  • Getzoff, E.D., Tainer, J.A., Weiner, P.K., Kollman, P.A., Richardson, J.S., and Richardson, D.C. (1983) Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 306, 284–287.

    Article  PubMed  Google Scholar 

  • Gonzales-Porque, P., Baldensten, A. and Reichard, P. (1970) The involvement of the thioredoxin system in the reduction of methionine sulfoxide and sulfate. J. Biol. Chem. 254, 2371–2374.

    Google Scholar 

  • Gösset, J., Lee, K., Cunningham, R.P. and Doetsch, P.W. (1988) Yeast redoxyen- donuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III. Biochemistry 27, 2629–2634.

    Article  Google Scholar 

  • Graves, R.J., Felzenszwalb, I., Laval, J. and O’Connor, T.R. (1992) Excision of 5’-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. J. Biol. Chem. 267, 14429–14435.

    PubMed  CAS  Google Scholar 

  • Greenberg, J.T. and Demple, B. (1986) Glutathione in Escherichia coli is dispensible for resistance to H2O2 and gamma radiation. J. Bacteriol. 168, 1026–1029.

    PubMed  CAS  Google Scholar 

  • Hagensee, M.E. and Moses, R.E. (1989) Multiple pathways for repair of hydrogen peroxide-induced DNA damage in Escherichia coli. J. Bacteriol. 171, 991–995.

    PubMed  CAS  Google Scholar 

  • Hagensee, M.E. and Moses, R.E. (1990) Bleomycin-treated DNA is specifically cleaved only by endonuclease IV in E. coli. Biochim. Biophys. Acta 1048, 19–23.

    CAS  Google Scholar 

  • Henner, W.D., Greenberg, S.M., and Haseltine, W.A. (1982) Sites and structure of y radiation-induced DNA strand breaks. J. Biol. Chem. 257, 11750–11754.

    PubMed  CAS  Google Scholar 

  • Henner, W.D., Grunberg, S.M. and Haseltine, W.A. (1983) Enzyme action at the 3’ termini of ionizing radiation-induced DNA-strand breaks. J. Biol. Chem. 258, 15198–15205.

    PubMed  CAS  Google Scholar 

  • Henner, W.D., Rodriguez, L.O., Hecht, S.M. and Haseltine, W.A. (1983) y ray induced deoxyribonucleic acid strand breaks. J. Biol. Chem. 258, 711–713.

    Google Scholar 

  • Higgins, S.A., Fenkel, K., Cummings, A. and Teebor, G.W. (1987) Definitive characterization of human thymine glycol N-glycosy läse activity. Biochemistry 26, 1683–1688.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J.A., Chin, S.M. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640–642.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J.A. and Linn, S. (1986) Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J. Bacteriol. 166, 519–527.

    PubMed  CAS  Google Scholar 

  • Imlay, J.A. and Linn, S. (1988) DNA damage and oxygen radical toxicity. Science 240, 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, F.S., Morgan, R.W., Christman, M.F. and Ames, B.N. (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J. Biol. Chem. 264, 1488–1496.

    PubMed  CAS  Google Scholar 

  • Jorgensen, T.J., Kow, Y-W., Wallace, S.S. and Henner, W.D. (1987) Mechanism of action of Micrococcus luteus 7-endonuclease. Biochemistry 26, 6436–6443.

    Article  PubMed  CAS  Google Scholar 

  • Kappus, H. (1985) Lipid peroxidation: mechanisms, analysis, enzymology and biological relevence. In Oxidative stress ( H. Sies, ed.), Academic Press, New York, pp. 273–310.

    Google Scholar 

  • Kashket, E.R. (1985) The proton motive force in bacteria: a critical assessment of methods. Ann. Rev. Microbiol. 39, 219–242.

    Article  CAS  Google Scholar 

  • Klapper, I., Hagstron, R., Fine, R. and Hnig, B. (1986) Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins 1, 47–89.

    Article  PubMed  CAS  Google Scholar 

  • Kouchakdjian, M., Bodepudi, V., Shibutani, S., Eisenberg, M., Johnson, F., Groilman, A.P. and Patel, D.J. (1991) NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG (syn). dA (anti) alignment at lesion site. Biochemistry 30, 1403–1412.

    Article  PubMed  CAS  Google Scholar 

  • Kow, Y-W. and Wallace, S.S. (1987) Mechanism of action of Escherichia coli endonuclease III. Biochemistry 26, 8200–8206.

    Article  PubMed  CAS  Google Scholar 

  • Kuchino, Y., Mori, F., Kasai, H., Inoue, H., Iwai, S., Miura, K., Ohtsuka, E. and Nishimura, S. (1987) Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at aduacent residues. Nature 327, 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, C.-F., McRee, D.E., Fisher, C.L., O’Handley, S.F., Cunningham, R.P. and Tainer, J.A. (1992) Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III. Science 258, 434–440.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, S.H., Adler, J., Gargus, J.J. and Hogg, R.W. (1974) Chemomechanical coupling without ATP: the source of energy for motility and Chemotaxis in bacteria. Proc. Natl. Acad. Sci. USA 71, 1239–1243.

    Article  PubMed  CAS  Google Scholar 

  • Laspia, M.F. and Wallace, S.S. (1988). Excision repair of thymine glycols, urea residues and apurinic sites in Escherichia coli. J. Bacteriol. 170, 3359–3366.

    PubMed  CAS  Google Scholar 

  • Levin, J.D., Johnson, A.W. and Demple, B. (1988) Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J. Biol. Chem. 263, 8066–8071.

    PubMed  CAS  Google Scholar 

  • Levine, R.L., Oliver, C.N., Fulks, R.M. and Stadtman, E.R. (1981) Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc. Natl. Acad. Sci. USA 78, 2120–2124.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J. and Sancar, A. (1989) A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. Biochemistry 28, 7979–7984.

    Article  PubMed  CAS  Google Scholar 

  • Lunn, C.A. and Pigiet, V.P. (1987) The effects of thioredoxin on the radiosensitivity of bacteria. Int. J. Radiat. Biol. 51, 29–38.

    Article  CAS  Google Scholar 

  • Maki, H. and Sekiguchi, M. (1992) MutT protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis. Nature 355, 273–275.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney, R. (1985) The effects of membrane lipids on permeability and transport in prokaryotes. In Structure and Properties of G. Membranes ( G. Benga, ed.), CRC Press, Boca Raton, FL, pp. 75–91.

    Google Scholar 

  • Mead, J. (1976) Free radical mechanisms of lipid damage and consequences for cellular membranes. In Free radicals in Biology ( W.A. Pryor, ed.), Academic Press, New York, pp. 51–68.

    Google Scholar 

  • Meister, A. and Anderson, M.E. (1983) Glutathione. Ann. Rev. Biochem. 52, 711–760.

    Article  PubMed  CAS  Google Scholar 

  • Metzel-Landbeck, L., Schultz, G. and Hagen, U. (1976) In vitro repair of radiation-induced strand breaks in DNA. Biochem. Biophys. Acta 434, 145–153.

    Google Scholar 

  • Michaels, M.L., Cruz, C., Grollman, A.P. and Miller, J.H. (1992) Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl. Acad. Sci. USA 89, 7022–7025.

    Article  PubMed  CAS  Google Scholar 

  • Michaels, M.L., Pham, L., Nghiem, Y., Cruz, C. and Miller, J.H. (1990) MutY, an adenine gly cosy läse active on GA mispairs, has homology to endonuclease III. Nucleic Acids Res. 18, 3843 - 3845.

    Article  Google Scholar 

  • Milcarek, C. and Weiss, B. (1972) Mutants of Escherichia coli with altered deoxyribonucleases. J. Mol. Biol. 68, 303–318.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, R.W., Christman, M.F., Jacobson, F.S. Storz, G. and Ames, B.N. (1986) Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. USA 83, 8059–8063.

    Article  PubMed  CAS  Google Scholar 

  • Moriya, M., Ou, C., Bodepudi, V., Johnson, F., Takeshita, M. and Grollman, A.P. (1991) Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat. Res. 254, 281–288.

    CAS  Google Scholar 

  • Muchou, M. and Eaton, J.W. (1992) Multicellular oxidant defense in unicellular organisms. Proc. Natl. Acad. Sci. USA 89, 7924–7928.

    Article  Google Scholar 

  • Natvig, D.O., Imlay, K., Touati, D. and Hallewell, R.A. (1987) Human CuZn-superoxide dismutase complements superoxide dismutase-deficient Escherichia coli mutants. J. Biol. Chem. 262, 14697–14701.

    PubMed  CAS  Google Scholar 

  • Povirk, L.F., Han, Y. and Steighner, R.J. (1989) Structure of bleomycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5’ extensions. Biochemistry 28, 5808–5814.

    Article  PubMed  CAS  Google Scholar 

  • Richter, H.E. and Loewen, P.C. (1981) Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem. Biophys. Res. Commun. 100, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  • Sandigursky, M. and Franklin, W.A. (1992) DNA deoxyribophosphodiesterase of Escherichia coli is associated with exonuclease I. Nucleic Acids Res. 20, 4699–4703.

    Article  PubMed  CAS  Google Scholar 

  • Segerback, D. (1983) Alkylation of DNA and hemoglobin in the mouse following exposure to ethene and ethene oxide. Chem.-Biol. Interact. 45, 135–151.

    Article  Google Scholar 

  • Shaaper, R.M. and Dunn, R.L. (1987) Escherichia coli mutT mutator effect during in vitro DNA synthesis. J. Biol Chem. 262, 16267–16270.

    Google Scholar 

  • Sharp, K., Fine, R. and Honig, B. (1987) Computer simulations of the diffusion of a substrate to an active site of an enzyme. Science 236, 1460–1463.

    Article  PubMed  CAS  Google Scholar 

  • Sies, H. (1986) Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl. 25, 1058–1071.

    Article  Google Scholar 

  • Siwek, B., Bricteux-Gregoire, S., Bailly, V. and Verly, W.G. (1988) The relative importance of Escherichia coli exonuclease III and endonuclease IV for the hydrolysis of 3’-phosphoglycolate ends in polynucleotides. Nucleic Acids Res. 16, 5031–5038.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, A., Kah, Y.W. and Van Houten, B. (1990) Damage repertoire of the Escherichia coli UvrABC nuclease complex includes basic sites, base damage analogues, and lesions containing adjacent 5’ or 3’ nicks. Biochemistry 29, 7251–7259.

    Article  PubMed  CAS  Google Scholar 

  • Stallings, W.C., Pattridge, K.A., Strong, R.K., et al. (1984) Manganese and iron superoxide dismutases are structural homologs. J. Biol. Chem. 259, 10695–10699.

    PubMed  CAS  Google Scholar 

  • Summerfield, F.W. and Tappel, A.L. (1983) Determination by fluorescence quenching of the environment of DNA crosslinks made by malondialdehyde. Biochem. Biophys. Acta 740, 185–189.

    PubMed  CAS  Google Scholar 

  • Swamy, K.H.S. and Golberg, A.L. (1981) E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 292, 652–654.

    Article  PubMed  CAS  Google Scholar 

  • Tainer, J.A., Getzoff, E.D., Richardson, J.S. and Richardson, D. C. (1983) Structure and mechanism of copper, zinc-superoxide dismutase. Nature 306, 284–287.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A. and Ames, B.N. (1990) Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265, 10535–10540.

    PubMed  CAS  Google Scholar 

  • Tchou, J., Kasai, H., Shibutani, S., Chung, M.-H., Laval, J., Grollman, A.P. and Nishimura, S. (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc. Natl. Acad. Sci. USA 88, 4690–4694.

    Google Scholar 

  • Teebor, G.W., Boorstein, R.J. and Cadet, J. (1988) The reparability of oxidative free radical mediated damage to DNA: a review. Int. J. Radiat. Biol. 54, 131–131.

    Article  PubMed  CAS  Google Scholar 

  • Tsai-Wu, J-J., Liu, H-F. and Lu, A-L. (1992) Escherichia coli MutY protein has both N-glycosylase and apurinic/apyrimidinic endonuclease activities on A · C and A · G mispairs. Proc. Natl. Acad. Sci. USA 89, 8779–8783.

    CAS  Google Scholar 

  • Van Bogelen, R.A., Kelley, P.M. and Neidhardt, F.C. (1987) Differential induction of heat shock, SOS, and oxidative stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169, 26–32.

    Google Scholar 

  • von Sontag, C. (1987). The Chemical Basis of Radiation Biology. Taylor & Francis, London.

    Google Scholar 

  • Wood, M.L., Dizdaroglu, M., Gajewski, E. and Essigman, J.M. (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29, 7024–7032.

    Article  PubMed  CAS  Google Scholar 

  • Yatvin, M.B., Wood, P.G. and Brown, S.M. (1972) Repair of plasma membrane injury and DNA single strand breaks in gamma-irradiated Escherichia coli B/r and Bs-1. Biochem. Biophys. Acta 287, 390–403.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Cunningham, R.P., Ahern, H. (1995). Antioxidant Defenses of Escherichia coli and Salmonella typhimurium . In: Ahmad, S. (eds) Oxidative Stress and Antioxidant Defenses in Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9689-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9689-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9691-2

  • Online ISBN: 978-1-4615-9689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics