Skip to main content

Mechanisms of Oxygen Activation and Reactive Oxygen Species Detoxification

  • Chapter
Oxidative Stress and Antioxidant Defenses in Biology

Abstract

The biochemistry of ‘reactive oxygen species’ (ROS) is an important field with practical implications, because whereas oxygen is an essential component for living organisms, the formation of reactive oxygen intermediates seems to be commonplace in aerobically metabolizing cells. In addition to aerobic metabolism-encompassing electron transfer chains and certain enzyme activities, environmental sources, such as air pollutants, photochemical smog, industrial chemicals, and ionizing radiation, as well as the metabolism of xenobiotics, contribute to the cellular steady-state concentration of ROS. Further, reactive species are formed as a response to diverse stimuli by specialized physiological reactions: the formation of oxyradicals during the respiratory burst and the release of the endothelium-derived releasing factor, identified as nitric oxide, are such examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikens, J. and Dix, T.A. (1991) Peroxyl radical (HOO)-initiated lipid peroxidation. The role of fatty acid hydroperoxides. J. Biol Chem. 266, 15091–15098.

    PubMed  CAS  Google Scholar 

  • Akanmu, D., Cecchini, R., Aruoma, O.I. and Halliwell, B. (1991) The antioxidant action of ergothioneine. Arch. Biochem. Biophys. 288, 10–16.

    PubMed  CAS  Google Scholar 

  • Allentoff, A.J., Bolton, J.L., Wilks, A., Thompson, J.A. and Ortiz de Montellano, P.R. (1992) Heterolytic versus homolytic peroxide bond cleavage by sperm whale myoglobin and myoglobin mutants. J. Am. Chem. Soc. 114, 9744–9749.

    CAS  Google Scholar 

  • Ames, B.N. (1990) Endogenous oxidative DNA damage, aging, and cancer. Free Rad. Res. Commun. 7, 121–128.

    Google Scholar 

  • Ames, B.N., Cathcart, R., Schwiers, E. and Hochstein, P. (1981) Uric acid provides an antioxidant defence in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl. Acad. Sci. USA 78, 6858–6862.

    PubMed  CAS  Google Scholar 

  • Arduini, A., Eddy, L. and Hochstein, P. (1990a) Detection of ferrylmyoglobin in the isolated ischemic rat heart. Free Rad. Biol. Med. 9, 511–513.

    PubMed  CAS  Google Scholar 

  • Arduini, A., Eddy, L. and Hochstein, P. (1990b) The reaction of ferrylmyoglobin with ergothioneine: a novel function for ergothioneine. Arch. Biochem. Biophys. 281, 41–43.

    PubMed  CAS  Google Scholar 

  • Arduini, A., Mancinelli, G., Radatti, G.L., Hochstein, P. and Cadenas, E. (1992) Possible mechanism of inhibition of nitrite-induced oxidation of oxyhemoglobin by ergothioneine and uric acid. Arch. Biochem. Biophys. 294, 398–402.

    PubMed  CAS  Google Scholar 

  • Aruoma, O.I. and Halliwell, B. (1989) Inactivation of α1-antiproteinase by hydroxyl radicals. The effect of uric acid. FEBS Lett. 244, 76–80.

    PubMed  CAS  Google Scholar 

  • Asmus, K.-D. (1990) Sulfur-centered free radicals. Methods Enzymol. 186, 168–180.

    PubMed  CAS  Google Scholar 

  • Augusto, O., Gatti, R.M. and Radi, R. (1994) Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autoxidation: direct evidence for metal-independent formation of free radical intermediates. Arch. Biochem. Biophys. 310, 118–125.

    PubMed  CAS  Google Scholar 

  • Bast, A. and Haennen, G.R.M.M. (1988) Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim. Biophys. Acta 963, 558–561.

    PubMed  CAS  Google Scholar 

  • Becker, B.H. (1993) Towards the physiological function of uric acid. Free Rad. Biol. Med. 14, 615–631.

    PubMed  CAS  Google Scholar 

  • Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A. and Freeman, B.A. (1990) Apparent hydroxyl radical production by peroxynitrite: Implication for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87, 1620–1624.

    PubMed  CAS  Google Scholar 

  • Beyer, R.E. and Ernster, L. (1990) The antioxidant role of coenzyme Q. In Highlights in Ubiquinone Research ( Lenaz, G., Barnabei, O., Rabbi, A. and Battino, M., eds.), Taylor & Francis, London, pp. 191–213.

    Google Scholar 

  • Bielski, B.H.J. (1978) Réévaluation of the spectral and kinetic properties of HO2 and O2-free radicals. Photochem. Photobiol 28, 645–649.

    CAS  Google Scholar 

  • Bielski, B.H.J. (1982) Chemistry of ascorbic acid radicals. In Ascorbic Acid: Chemistry, metabolism, and Uses ( Seib, P.A. and Tolbert, B.M., eds.), American Chemical Society, Washington, pp. 81–100.

    Google Scholar 

  • Bielski, B.H.J, and Cabelli, D.E. (1991) Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int. J. Radiat. Biol. 59, 291–319.

    PubMed  CAS  Google Scholar 

  • Bielski, B.H.J, and Shiue, G.G. (1979) Reaction rates of superoxide radicals with the essential amino acids. In Oxygen Free Radicals and Tissue Damage (Ciba Foundation Symposium 65 (new series)), Excerpta Medica, Amsterdam, pp. 43–48.

    Google Scholar 

  • Bieri, J.G. and Tolliver, T.J. (1981) On the occurrence of α-tocopherylquinone in rat tissue. Lipids 16, 777–779.

    PubMed  CAS  Google Scholar 

  • Blough, N.V. and Zafiriou, O.C. (1985) Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg. Chem. 24, 3502–3504.

    CAS  Google Scholar 

  • Boiteux, S., O’Connor, T.R., Lederer, F., Gouyette, A. and Laval, J. (1990) Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimsidinic sites. J. Biol. Chem. 265, 3916–3922.

    PubMed  CAS  Google Scholar 

  • Borg, D.C. and Schaich, K. (1984) Cytotoxicity from coupled redox cycling of autoxidizing xenobiotics and metals. Israel J. Chem. 24, 38–53.

    CAS  Google Scholar 

  • Boveris, A. and Cadenas, E. (1982) Production of superoxide radicals and hydrogen peroxide in mitochondria. In Superoxide Dismutase (Oberley, L.W., ed.), Vol. II, CRC Press, Boca Raton, FL, pp. 15–30.

    Google Scholar 

  • Bowry, V.W., Ingold, K.U. and Stocker, R. (1992) Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem. J. 288, 341–344.

    PubMed  CAS  Google Scholar 

  • Bowry, V.W. and Stocker, R. (1993) Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 115, 6029–6044.

    CAS  Google Scholar 

  • Bruckdorfer, K.R., Dee, G., Jacobs, M. and Rice-Evans, C. (1990a) The protective action of nitric oxide against membrane damage induced by myoglobin radicals. Biochem. Soc. Trans. 18, 285–286.

    PubMed  CAS  Google Scholar 

  • Bruckdorfer, K.R., Jacobs, M. and Rice-Evans, C. (1990b) Endothelium-derived relaxing factor (nitric oxide), lipoprotein oxidation and atherosclerosis. Biochem. Soc. Trans. 18, 1061–1063.

    PubMed  CAS  Google Scholar 

  • Buettner, G.R. and Jurkiewicz, B.A. (1993) Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Rad. Biol. Med. 14, 49–55.

    PubMed  CAS  Google Scholar 

  • Buffinton, G. and Cadenas, E. (1988) Reduction of ferrylmyoglobin by quinonoid compounds. Chem.-Biol. Interact. 66, 233–250.

    PubMed  CAS  Google Scholar 

  • Buffinton, G., Mira, D., Galaris, D., Hochstein, P. and Cadenas, E. (1988) Reduction of ferryl- and met-myoglobin to ferrous myoglobin by menadione-glutathione conjugate. Spectrophotometric studies under aerobic and anaerobic conditions. Chem.- Biol Interact. 66, 205–222.

    PubMed  CAS  Google Scholar 

  • Buffinton, G., Ollinger, K., Brunmark, A. and Cadenas, E. (1989) DT-diaphorase-catalyzed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates. Biochem. J. 257, 561–571.

    PubMed  CAS  Google Scholar 

  • Burton, G.W. and Ingold, K.U. (1986) Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res. 19, 194–201.

    CAS  Google Scholar 

  • Butler, J. and Hoey, B.M. (1992) Reactions of glutathione and glutathione radicals with benzoquinones. Free Rad. Biol. Med. 12, 337–345.

    PubMed  CAS  Google Scholar 

  • Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (-OH/O-) in aqueous solutions. J. Phys. Chem. Ref. Data 17, 513–886.

    CAS  Google Scholar 

  • Cadenas, E. (1984) Biological chemiluminescence. Photochem. Photobiol. 40, 823–830.

    PubMed  CAS  Google Scholar 

  • Cadenas, E. (1989) Biochemistry of oxygen toxicity. Ann. Rev. Biochem. 58, 79–110.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., Boveris, A. and Chance, B. (1984) Low-level chemiluminescence of biological systems. In Free Radical Biology and Medicine (Pryor, W.A., ed.), Vol. VI, Academic Press, New York, pp. 212–242.

    Google Scholar 

  • Cadenas, E., Boveris, A., Ragan, C.I. and Stoppani, A.O.M. (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heart mitochondria. Arch. Biochem. Biophys. 180, 248–257.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., Giulivi, C., Ursini, F. and Boveris, A. (1994) Electronically-excited state formation during lipid peroxidation. Methods Toxicol. I8, 384–397.

    Google Scholar 

  • Cadenas, E., Hochstein, P. and Ernster, L. (1992) Pro- and antioxidant functions of quinones and quinone reductases in mammalian cells. Adv. Enzymol. 65, 97–146.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., Merenyi, G. and Lind, J. (1989) Pulse radiolysis study on the reactivity of Trolox C phenoxyl radical with superoxide anion. FEBS Lett. 253, 235–238.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., Sies, H., Nastaincyzk, W. and Ullrich, V. (1983) Singlet oxygen formation detected by low-level chemiluminescence during the enzymatic reduction of prostaglandin G2 to H2. Hoppe-Seyler’s Z. Physiol. Chem. 364, 519–528.

    PubMed  CAS  Google Scholar 

  • Catalano, C.E., Choe, Y.S. and Ortiz de Montellano, P.R. (1989) Reactions of the protein radical in peroxide-treated myoglobin. Formation of a hemeprotein crosslink. J. Biol. Chem. 264, 10534–10541.

    PubMed  CAS  Google Scholar 

  • Chan, A.C., Tran, K., Raynor, T., Ganz, P.R. and Chow, C.K. (1991) Regeneration of vitamin E in human platelets. J. Biol. Chem. 266, 17290–17295.

    PubMed  CAS  Google Scholar 

  • Chan, E. and Weiss, B. (1986) Endonuclease IV of Escherichia coli is induced by paraquat. Proc. Natl. Acad. Sci. USA 84, 3189–3193.

    Google Scholar 

  • Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  • Christman, M.F., Morgan, R.W., Jacobson, F.S. and Ames, B.N. (1985) Positive control of a regulon for defenses against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell 41, 753–762.

    PubMed  CAS  Google Scholar 

  • Cross, C.E., Motchnik, P.A., Bruener, B.A., Jones, D.A., Kaur, H., Ames, B.N. and Halliwell, B. (1992) Oxidative damage to plasma constituents by ozone. FEBS Lett. 298, 269–272.

    PubMed  CAS  Google Scholar 

  • Csallany, A.S., Draper, H.H. and Shah, S.N. (1962) Conversion of d-α-tocopherol-C14 to tocopherol quinone in vivo. Arch. Biochem. Biophys. 98, 142–145.

    PubMed  CAS  Google Scholar 

  • D’Aquino, M., Dunster, C. and Willson, R.L. (1989) Vitamin A and glutathione-mediated free radical damage: competing reactions with polyunsaturated fatty acids and vitamin C. Biochem. Biophys. Res. Commun. 161, 1199–1203.

    PubMed  Google Scholar 

  • D’Arcy-Doherty, M., Wilson, I., Wardman, P., Basra, J., Patterson, L.H. and Cohen, G.M. (1986) Peroxidase activation of 1-naphthol to naphthoxy or naphthoxy-derived radicals and their reactions with glutathione. Chem.-Biol. Interact. 58, 199–215.

    PubMed  Google Scholar 

  • Darley-Usmar, V., Hogg, N., O’Leary, V.J., Wilson, M.T. and Moncada, S. (1993) The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Rad. Res. Commun. 17, 9–20.

    Google Scholar 

  • Davies, K.J.A. (1986) Intracellular proteolytic systems may function as secondary antioxidant defenses: a hypothesis. J. Free Rad. Biol. Med. 2, 155–173.

    CAS  Google Scholar 

  • Davies, K.J.A. (1987) Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 262, 9902–9907.

    PubMed  CAS  Google Scholar 

  • Davies, K.J.A., Lin, S.W. and Pacifici, R.E. (1987) Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J. Biol. Chem. 262, 9914–9920.

    PubMed  CAS  Google Scholar 

  • Davies, M.J. (1990) Detection of myoglobin-derived radicals on reaction of metmyoglobin with hydrogen peroxide and other peroxidic compounds. Free Radical Res. Commun. 10, 361–370.

    CAS  Google Scholar 

  • Davies, M.J. (1991) Identification of a globin free radical in equine myoglobin treated with peroxides. Biochim. Biophys. Acta 1077, 86–90.

    PubMed  CAS  Google Scholar 

  • Davies, M.J. and Puppo, A. (1992) Direct detection of a globin-derived radical in leghaemoglobin treated with peroxides Biochem. J. 281, 197–201.

    PubMed  CAS  Google Scholar 

  • Davies, M.J. and Slater, T.F. (1987) Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy. Biochem. J. 245, 167–173.

    PubMed  CAS  Google Scholar 

  • Dean, R.T. (1991) Protein damage and repair: an overview, in Oxidative Damage and Repair: Chemical, Biological and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 341–347.

    Google Scholar 

  • Dean, R.T., Hunt, J.V., Grant, A.J., Yamamoto, Y. and Niki, E. (1991) Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Rad. Biol. Med. 11, 161–168.

    PubMed  CAS  Google Scholar 

  • Dee, G., Rice-Evans, C., Obeyesekera, S., Meraji, S., Jacobs, M. and Bruckdorfer, K.R. (1991) The modulation of ferryl myoglobin formation and its oxidative effects on low density lipoproteins by nitric oxide. FEBS Lett. 294, 38–42.

    PubMed  CAS  Google Scholar 

  • deGroot, H., Hegi, U. and Sies, H. (1993) Loss of α-tocopherol upon exposure to nitric oxide or the sydnonimine SIN-1. FEBS Lett. 315, 139–142.

    CAS  Google Scholar 

  • Demple, B. and Levin, J.D. (1991) Repair system for radical-damaged DNA. In Oxidative Stress: Oxidants and Antioxidants ( Sies, H., ed.), Academic Press, London, pp. 119–154.

    Google Scholar 

  • DiMascio, P., Catalani, L.H. and Bechara, E.J.H. (1992) Are dioxetanes chemiluminescent intermediates in lipoperoxidation? Free Rad. Biol. Med. 12, 471–478.

    CAS  Google Scholar 

  • Dix, T.A., Fontana, R., Panthani, A. and Marnett, L.J. (1985) Hematin-catalyzed epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by polyunsaturated fatty acid hydroperoxides. J. Biol. Chem. 260, 5358–5365.

    PubMed  CAS  Google Scholar 

  • Doetsch, P.W. (1991) Repair of oxidative DNA damage in mammalian cells. In Oxidative Damage and Repair: Chemical, Biological and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 192–196.

    Google Scholar 

  • Dolphin, D. (1985) Cytochrome P450: substrate and prosthetic-group free radicals generated during the enzymatic cycle. Phil. Trans. R. Soc. Lond. B. 311, 579–591.

    CAS  Google Scholar 

  • Durän, N. and Cadenas, E. (1987) The role of singlet oxygen and triplet carbonyls in biological systems. Rev. Chem. Intermediates 8, 147–187.

    Google Scholar 

  • Eddy, L., Arduini, A. and Hochstein, P. (1990) Reduction of ferrylmyoglobin in rat diaphragm. Am. J. Physiol. 259, C995–C997.

    PubMed  CAS  Google Scholar 

  • Encinas, M.V., Lissi, E. A. and Olea, A.F. (1985) Quenching of triplet benzophenone by vitamins E and C and by sulfur containing amino acids and peptides. Photochem. Photobiol. 42, 347–352.

    PubMed  CAS  Google Scholar 

  • Foote, C.S. (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. In Free Radicals in Biology ( Pryor, W.A., ed.), Vol. II, pp. 85–133, Academic Press, New York.

    Google Scholar 

  • Forman, H.J. and Boveris, A. (1982) Superoxide radical and hydrogen peroxide in mitochondria. In Free Radicals in Biology ( Pryor, W.A., ed.), vol. V, pp. 65–90, Academic Press, New York.

    Google Scholar 

  • Forman, H.J. and Thomas, M.J. (1986) Oxidant production and bactericidal activity of phatocytes. Ann. Rev. Physiol. 48, 669–680.

    CAS  Google Scholar 

  • Fornace Jr., A.J., Alamo Jr., I. and Hollander, M.C. (1988) DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85, 8800–8804.

    PubMed  CAS  Google Scholar 

  • Forni, L.G., Monig, J., Mora-Arellano, V.O. and Willson, R.L. (1983) Thiyl free radicals: direct observation of electron transfer reactions with phenothiazines and ascorbate. J. Chem. Soc. Perkin Trans. 11, pp. 961–965.

    Google Scholar 

  • Forni, L.G. and Willson, R.B. (1986a) Thiyl and phenoxyl free radicals and NADH. Direct observation of one-electron oxidation. Biochem. J. 240, 897–903.

    PubMed  CAS  Google Scholar 

  • Forni, L.G. and Willson, R.B. (1986b) Thiyl free radicals and the oxidation of ferrocytochrome c. Direct observation of coupled hydrogen-atom- and electron-transfer reactions. Biochem. J. 240, 905–907.

    PubMed  CAS  Google Scholar 

  • Forsmark, P. A°berg, F., Norling, B., Nordenbrand, K., Dallner, G. and Ernster, L. (1991) Vitamin E and ubiquinol as inhibitors of lipid peroxidation in biological membranes. FEBS Lett. 285, 39–43.

    PubMed  CAS  Google Scholar 

  • Frimer, A.A. (1983) The organic chemistry of superoxide anion radical. In The Chemistry of Functional Groups: Peroxides ( Patai, S., ed), John Wiley, New York, pp. 429–461.

    Google Scholar 

  • Frimer, A. A. (1988) Superoxide chemistry in non-aqueous media. In Oxygen Radicals in Biology and Medicine ( Simic, M.G., Taylor, K.A., Ward, J.F. and von Sonntag, C., eds.), Plenum Press, New York, pp. 29–38.

    Google Scholar 

  • Galaris, D., Cadenas, E. and Hochstein, P. (1989a) Redox cycling of myoglobin and ascorbate: a potential protective mechanism against oxidative reperfusion injury in muscle. Arch. Biochem. Biophys. 273, 497–504.

    PubMed  CAS  Google Scholar 

  • Galaris, D., Cadenas, E. and Hochstein, P. (1989b) Glutathione-dependent reduction of peroxides during ferryl- and metmyoglobin interconversion: a potential protective mechanism in muscle. Free Rad. Biol. Med., 6, 473–478.

    PubMed  CAS  Google Scholar 

  • Galaris, D., Mira, D., Sevanian, A., Cadenas, E. and Hochstein, P. (1988) Co-oxidation of salicylate and cholesterol and the generation of electronically-excited states during the oxidation of metmyoglobin by H2O2. Arch. Biochem. Biophys. 262, 221–231.

    PubMed  CAS  Google Scholar 

  • Galaris, D., Sevanian, A., Cadenas, E. and Hochstein, P. (1990) Ferrylmyoglobin-catalyzed linoleic acid peroxidation. Arch. Biochem. Biophys. 281, 163–169.

    PubMed  CAS  Google Scholar 

  • Gebicki, J.M. and Bielski, B.H.J. (1981) Comparison of the capacities of the perhydroxyl and the superoxide radicals to initiate chain oxidation of linoleic acid. J. Am. Chem. Soc. 103, 7020–7022.

    CAS  Google Scholar 

  • Gebicki, J.M., Jiirgens, G. and Esterbauer, H. (1991) Oxidation of low-density lipoprotein in vitro. In Oxidative Stress: Oxidants and Antioxidants ( Sies, H., ed.), Academic Press, London, pp. 371–397.

    Google Scholar 

  • George, P. and Irvine, D.H. (1952) The reaction between metmyoglobin and hydrogen peroxide. Biochem. J. 52, 511–517.

    PubMed  CAS  Google Scholar 

  • Giamalva, D.H., Church, D.F. and Pryor, W.A. (1986) Kinetics of ozonization. IV. Reactions of ozone with alphatocopherol and oleate and linoleate esters in carbon tetrachloride and in aqueous micellar solves. J. Am. Chem. Soc. 108, 6646–6651.

    CAS  Google Scholar 

  • Gibson, J.F., Ingram, D.J.E. and Nichols, P. (1958) Free radical produced in the reaction of metmyoglobin with hydrogen peroxide. Nature 181, 1398–1399.

    PubMed  CAS  Google Scholar 

  • Giulivi, C. and Cadenas, E. (1993a) Inhibition of protein radical reactions of ferry 1-myoglobin by the water-soluble analog of vitamin E, Trolox C. Arch. Biochem. Biophys. 303, 152–158.

    PubMed  CAS  Google Scholar 

  • Giulivi, C. and Cadenas, E. (1993b) The reaction of ascorbic acid with different heme iron redox states of myoglobin. Antioxidant and Pro-oxidant aspects. FEBS Lett. 332, 287–290.

    PubMed  CAS  Google Scholar 

  • Giulivi, C. and Davies, K.J.A. (1990) A novel antioxidant role for hemoglobin. The comproportionation of ferrylhemoglobin with oxyhemoglobin. J. Biol. Chem. 265, 19453–19460.

    PubMed  CAS  Google Scholar 

  • Giulivi, C., Romero, F.J. and Cadenas, E. (1992) The interaction of trolox C, a water-soluble vitamin E analog, with ferrylmyoglobin: reduction of the oxoferryl moiety. Arch. Biochem. Biophys. 299, 302–312.

    CAS  Google Scholar 

  • Goldstein, S. and Czapski, G. (1986) The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O2. J. Free Rad. Biol. Med. 2, 3–11.

    CAS  Google Scholar 

  • Green, M.J. and Hill, H.A.O. (1984) Chemistry of dioxygen. Methods Enzymol. 105, 3–22.

    PubMed  CAS  Google Scholar 

  • Greenberg, J.T. and Demple, B. (1989) A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J. Bacteriol. 171, 3933–3939.

    PubMed  CAS  Google Scholar 

  • Griffith, T.M., Edwards, D.H., Lewis, M.J., Newby, A.C. and Henderson, A.H. (1984) The nature of endothelium-derived vascular relaxant factor. Nature 308, 645–647.

    PubMed  CAS  Google Scholar 

  • Grisham, M.B. (1985) Myoglobin-catalyzed, hydrogen peroxide-dependent arachidonic acid peroxidation. Free Rad. Biol. Med. 1, 227–232.

    CAS  Google Scholar 

  • Haennen, G.R.M.M. and Bast, A. (1991) Scavenging of hypochlorous acid by lipoic acid. Biochem. Pharmacol. 42, 2244–2246.

    Google Scholar 

  • Haennen, G.R.M.M., de Rooij, B.M., Vermeulen, N.P.E. and Bast, A. (1990) Mechanism of the reaction of ebselen with endogenous thiols: dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen. Mol. Pharmacol. 37, 412–422.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501–514.

    PubMed  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1–85.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., Hu, M.-L., Louie, S., Duvall, T.R., Tarkington, B.K., Motchnik, P. and Cross, C.E. (1992) Interaction of nitrogen dioxide with human plasma. Antioxidant depletion and oxidative changes. FEBS Lett. 313, 62–66.

    PubMed  CAS  Google Scholar 

  • Harada, K. Tamura, M. and Yamazaki, I. (1986) The two-electron reduction of sperm whale ferrylmyoglobin by ethanol. J. Biochem. 100, 499–504.

    PubMed  CAS  Google Scholar 

  • Harada, K. and Yamazaki, I. (1987) Electron spin resonance spectra of free radicals formed in the reaction of metmyoglobins with ethylhydroperoxide. J. Biochem. 101, 283–286.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., Kanetoshi, A., Nakamura, M., Tamura, M. and Shirahama, H. (1992) Reduction of α-tocopherylquinone to α-tocopherylhydroquinone in rat hepatocytes. Biochem. Pharmacol. 44, 489–493.

    PubMed  CAS  Google Scholar 

  • Ho, C.T. and Chan, A.C. (1992) Regeneration of vitamin E in rat polymorphonuclear leukocytes. FEBS Lett. 306, 269–272.

    PubMed  CAS  Google Scholar 

  • Hogg, N., Darley-Usmar, V.M., Moncada, S.M. and Wilson, M.T. (1992) Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem. J. 281, 419–424.

    PubMed  CAS  Google Scholar 

  • Howard-Flanders, P. (1981) Inducible repair of DNA. Sci. Am. 245, 72–80.

    PubMed  CAS  Google Scholar 

  • Hutchinson, P.J.A., Palmer, R.M.J, and Moncada, S. (1987) Comparative pharmacology of EDRF and nitric oxide on vascular strips. Eur. J. Pharmacol. 141, 445–451.

    PubMed  CAS  Google Scholar 

  • Ingold, K.U., Bowry, V.W., Stocker, R. and Walling, C. (1993) Autoxidation of lipids and antioxidation by α-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc. Natl. Acad. Sci. USA 90, 45–49.

    PubMed  CAS  Google Scholar 

  • Ishii, T., Iwahashi, H., Sugata, R. and Kido, R. (1992) Oxidation of 3-hydroxykyn-urenine catalyzed by methemoglobin with hydrogen peroxide. Free Rad. Biol. Med. 13, 17–20.

    PubMed  CAS  Google Scholar 

  • Jore, D., Ferradini, C., Madden, K.P. and Patterson, L.K. (1991) Spectra and structure of α-tocopherol radicals produced in anoxic media. Free Radical Biol. Med. 11, 349–352.

    CAS  Google Scholar 

  • Kagan, V.E., Serbinova, E.A., Koynova, G.M., Kitanova, S.A., Tyurin, V.A., Stoychev, T.S., Quinn, P.J. and Packer, L. (1990fl) Antioxidant action of ubiquinol homologues with different isoprenoid chain length in biomembranes. Free Rad. Biol Med. 9, 117–126.

    Google Scholar 

  • Kagan, V., Serbinova, E. and Packer, L. (1990b) Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem. Biophys. Res. Commun. 169, 851–857.

    PubMed  CAS  Google Scholar 

  • Kagan, V.E., Shvedova, A., Serbinova, E., Khan, S., Swanson, C., Powel, R. and Packer, L. (1992) Dihydrolipoic acid—A universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl, and chromanoxyl radicals. Biochem. Pharmacol. 44, 1637–1649.

    PubMed  CAS  Google Scholar 

  • Kanner, J., German, J.B. and Kinsella, J.E. (1987) Initiation of lipid peroxidation in biological systems. Crit. Rev. Food Sci. Nutr. 25, 317–364.

    PubMed  CAS  Google Scholar 

  • Kanner, J. and Harel, S. (1985a) Initiation of membranal lipid peroxidation by activated metmyoglobin and methemoglobin. Arch. Biochem. Biophys. 237, 314–321.

    PubMed  CAS  Google Scholar 

  • Kanner, J. and Harel, S. (1985b) Lipid peroxidation and oxidation of several compounds by H2O2 activated metmyoglobin. Lipids 20, 625–628.

    PubMed  CAS  Google Scholar 

  • Kanner, J. and Harel, S. (1987) Desferrioxamine as an electron donor. Inhibition of membranal lipid peroxidation initiated by H2O2-activated metmyoglobin and other peroxidizing systems. Free Rad. Res. Commun. 3, 309–317.

    CAS  Google Scholar 

  • Kanner, J., Harel, S. and Granit, R. (1991) Nitric oxide as an antioxidant. Arch. Biochem. Biophys. 289, 130–136.

    PubMed  CAS  Google Scholar 

  • Kanofsky, J.R. (1984) Singlet oxygen production by lactoperoxidase: halide dependence and quantitation of yield. J. Photochem. 25, 105–113.

    CAS  Google Scholar 

  • Kanofsky, J.R. (1986) Singlet oxygen production from the reactions of alkylperoxy radicals. Evidence from 1268 nm chemiluminescence. J. Org. Chem. 51, 3386–3388.

    CAS  Google Scholar 

  • Kanofsky, J.R. and Axelrod, B. (1986) Singlet oxygen production by soybean lipoxygenase isozymes. J. Biol. Chem. 261, 1099–1104.

    PubMed  CAS  Google Scholar 

  • Kaur, H. and Halliwell, B. (1990) Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem.-Biol. Interact. 73, 235–247.

    PubMed  CAS  Google Scholar 

  • Kedderis, G.L., Rickert, D.E., Pandey, R.N. and Hollenberg, P.F. (1986) lsO studies of the peroxidase-catalyzed oxidation of N-methylcarbazole. J. Biol. Chem. 261, 15910–15914.

    Google Scholar 

  • Kelder, P.P., deMol, N.J. and Janssen, L.H. (1989) Is hemoglobin a catalyst for sulfoxidation of chlorpromazine? An investigation with isolated purified hemoglobin and hemoglobin in monooxygenase and peroxidase mimicking systems. Biochem. Pharmacol. 38, 3593–3599.

    PubMed  CAS  Google Scholar 

  • Kelder, P.P., deMol, N.J. and Janssen, L.H. (1991) Mechanistic aspects of the oxidation of phenothiazine derivatives by methemoglobin in the presence of hydrogen peroxide. Biochem. Pharmacol. 42, 1551–1559.

    PubMed  CAS  Google Scholar 

  • Kelder, P.P., Fischer, M.J., deMol, N.J. and Janssen, L.H. (1991) Oxidation of chlorpromazine by methemoglobin in the presence of hydrogen peroxide. Formation of chlorpromazine radical cation and its covalent binding to methemoglobin. Arch. Biochem. Biophys. 284, 313–319.

    PubMed  CAS  Google Scholar 

  • Kellogg, R.E. (1969) Mechanism of chemiluminescence from peroxy radicals. J. Am. Chem. Soc. 91, 5433–5436.

    CAS  Google Scholar 

  • Kelman, D.J. and Mason, R.P. (1992) The myoglobin-derived radical formed on reaction of metmyoglobin with hydrogen peroxide is not a tyrosine peroxyl radical. Free Radical Res. Commun. 16, 27–33.

    CAS  Google Scholar 

  • Khan, A.U. (1984) Discovery of enzyme generation of “Ag molecular oxygen: spectra of (0,0)1 → 3Σg- IR emission”. J. Photochem. 25, 327–334.

    CAS  Google Scholar 

  • King, K.N. and Winfield, M.E. (1963) The mechanism of metmyoglobin oxidation. J. Biol. Chem. 238, 4520–1528.

    Google Scholar 

  • Kittridge, K. and Willson, R.L. (1984) Uric acid substantially enhances the free radical inactivation of alcohol dehydrogenase. FEBS Lett. 170, 162–164.

    PubMed  CAS  Google Scholar 

  • Koppenol, W.H. and Butler, J. (1985) Energetics of interconversion reactions of oxyradicals. Adv. Free Radical Biol. Med. 1, 91–132.

    CAS  Google Scholar 

  • Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H. and Beckman, J.S. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5, 834–842.

    PubMed  CAS  Google Scholar 

  • Koppenol, W.H. and Liebman, J.F. (1984) The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). J. Phys. Chem. 88, 99–101.

    CAS  Google Scholar 

  • Krinsky, N.I. (1979) Biological roles of singlet oxygen. In Singlet Oxygen ( Wasserman, H.H. and Murray, W.A., eds.), Academic Press, New York, pp. 597–641.

    Google Scholar 

  • Laranjinha, J.A.N., Almeida, L.M. and Madeira, M.C. (1993) Ferrylmyoglobin (FeIV) reduction by phenolic microcomponents of diet. Inhibition of lipid peroxidation in human low density liproteins. In International Conference on Critical Aspects of Free Radicals in Chemistry, Biochemistry, and Medicine (H. Nohl and H. Esterbauer, Organizers ), Book of Abstracts, p. 239.

    Google Scholar 

  • Lenaz, G., Barnabaei, O., Rabbi, A. and Battino, M. (eds.) (1990) Highlights in Ubiquinone Research, Taylor & Francis, London.

    Google Scholar 

  • Levine, R.L., Climent, I., Farber, J.M., Shames, B.D., Sahakian, J.A. and Rivett, A.J. (1991) Metal-catalyzed oxidation of glutamine synthetase: determinants of proteolytic susceptibility, in Oxidative Damage and Repair: Chemical, Biological and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 373–379.

    Google Scholar 

  • Liebler, D.C., Baker, P.F. and Kaysen, K.L. (1990) Oxidation of vitamin E: evidence for competing autoxidation and peroxyl radical trapping reactions of the tocopheroxyl radical. J. Am. Chem. Soc. 112, 6995–7000.

    CAS  Google Scholar 

  • Liebler, D.C., Kaysen, K.L. and Burr, J.A. (1991) Peroxyl radical trapping and autoxidation reactions of α-tocopherol in lipid bilayers. Chem. Res. Toxicol. 4, 89–93.

    PubMed  CAS  Google Scholar 

  • Liebler, D.C., Kaysen, K.L. and Kennedy, T.A. (1989) Redox cycles of vitamin E: hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones. Biochemistry 28, 9772–9777.

    PubMed  CAS  Google Scholar 

  • Lindhal, T. (1987) Regulation and deficiencies in DNA repair. Brit. J. Cancer 56, 91–95.

    Google Scholar 

  • Lubin, B.H. and Kuypers, F.A. (1991) Phospholipid repair in human erythrocytes, in Oxidative Damage and Repair: Chemical, Biological, and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 557–563.

    Google Scholar 

  • Maguire, J.J., Wilson, D.S. and Packer, L. (1989) Mitochondrial electron transport-linked tocopheroxyl radical reduction. J. Biol. Chem. 264, 851–857.

    Google Scholar 

  • Maiorino, M., Ursini, F. and Cadenas, E. (1994) The reactivity of myoglobin towards lipid hydroperoxides. Free Rad. Biol. Med. 16, 661–667.

    PubMed  CAS  Google Scholar 

  • Maples, K.R. and Mason, R.P. (1988) Free radical metabolite of uric acid. J. Biol. Chem. 263, 1709–1712.

    PubMed  CAS  Google Scholar 

  • Marcus, M.F. and Hawley, M.D. (1970) Electrochemical studies of the redox behaviour of α-tocopherol. Biochim. Biophys. Acta 201, 1–8.

    PubMed  CAS  Google Scholar 

  • McCay, P.B., Brueggemann, G., Lai, E.K. and Powell, S.R. (1989) Evidence that α-tocopherol functions cyclically to quench free radicals in hepatic microsomes. Requirement for glutathione and a heat labile factor. Ann. N.Y. Acad. Sci. 570, 32–45.

    PubMed  CAS  Google Scholar 

  • Melhorn, R.J. and Gomez, J. (1993) Hydroxyl and alkoxyl radical production by oxidation products of metmyoglobin. Free Rad. Res. Commun. 18, 29–41.

    Google Scholar 

  • Miki, H., Harada, K., Yamazaki, I., Tamura, M. and Watanabe, H. (1989) Electron spin resonance spectrum of Tyr-151 free radical formed in reactions of sperm whale myoglobin with ethyl hydroperoxide and potassium irridate. Arch. Biochem. Biophys. 275, 354–362.

    PubMed  CAS  Google Scholar 

  • Mitsos, S.E., Kim, D., Lucceshi, B.R. and Fantone, J.C. (1988) Modulation of myoglobin-H2O2-mediated peroxidation reactions by sulfhydryl compounds. Lab. Invest. 59, 824–830.

    PubMed  CAS  Google Scholar 

  • Mohr, D., Bowry, V.W. and Stocker, R. (1992) Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim. Biophys. Acta 1126, 247–254.

    PubMed  CAS  Google Scholar 

  • Moncada, S., Marietta, M.A., Hibbs, Jr. J.B. and Higgs, E.A. (Eds) (1992) The Biology of Nitric Oxide. Vol. I and II, Porland Press, London.

    Google Scholar 

  • Moncada, S., Palmer, R.M.J, and Higgs, E.A. (1991) NO: Physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43, 109–142.

    PubMed  CAS  Google Scholar 

  • Moncada, S., Radomski, M.W. and Palmer, R.M.J. (1988) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem. Pharmacol. 37, 2495–2501.

    PubMed  CAS  Google Scholar 

  • Mordente, A., Martorana, G.E., Santini, S.A., Miggiano, G.A.D., Petitti, T., Giardina, B. and Littarru, G.P. (1993) Effect of coenzyme Q on ferrylmyoglobin. In International Conference on Critical Aspects of Free Radicals in Chemistry, Biochemistry, and Medicine (H. Nohl and H. Esterbauer, Organizers ), Book of Abstracts, p. 94.

    Google Scholar 

  • Murphy, M.E., Kolvenbach, R., Aleksis, M., Hansen, R. and Sies, H. (1992) Antioxidant depletion in aortic crossclamping ischemia: increase of the plasma α-tocopherylquinone/ α-tocopherol ratio. Free Rad. Biol. Med. 13, 95–100.

    PubMed  CAS  Google Scholar 

  • Murphy, M.E. and Sies, H. (1990) Visible-range low-level chemiluminescence in biological systems. Methods Enzymol. 186, 595–610.

    PubMed  CAS  Google Scholar 

  • Murphy, M.E. and Sies, H. (1992) Reversible conversion of nitroxyl anion to nitric oxide by superoxide dismutase. Proc. Natl. Acad. Sci. USA 88, 10860–10864.

    Google Scholar 

  • Nakamura, M. and Hayashi, T. (1992) Oxidation mechanism of vitamin E analogue (Trolox C, 6-hydroxy-2,2,5,7,8-pentamethylchroman) and vitamin E by horseradish peroxidase and myoglobin. Arch. Biochem. Biophys. 299, 313–319.

    PubMed  CAS  Google Scholar 

  • Naqui, A., Cadenas, E. and Chance, B. (1986) Reactive oxygen intermediates in biochemistry. Ann. Rev. Biochem. 55, 137–166.

    PubMed  CAS  Google Scholar 

  • Nathan, C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064.

    PubMed  CAS  Google Scholar 

  • Nohl, H. (1987) Demonstration of the existence of an organo-specific NADH dehydrogenase in heart mitochondria. Eur. J. Biochem. 169, 585–591.

    PubMed  CAS  Google Scholar 

  • Ollinger, K., Buffinton, G.D., Ernster, L. and Cadenas, E. (1990) Effect of superoxide dismutase on the autoxidation of substituted hydro-and semi-naphthoquinones. Chem.-Biol. Interact. 73, 53–76.

    PubMed  CAS  Google Scholar 

  • Omar, B., McCord, J. and Downey, J. (1991) Ischaemia-reperfusion. In Oxidative Stress: Oxidants and Antioxidants (Sies, H., ed.), Academic Press, London, (pp. 493–527.)

    Google Scholar 

  • Ordonez, I. and Cadenas, E. (1992) Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase. Biochem. J. 286, 481–490.

    PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P.R. and Catalano, C.E. (1985) Epoxidation of styrene by hemoglobin and myoglobin. Transfer of oxidizing equivalents to the protein surface. J. Biol. Chem. 260, 9265–9271.

    Google Scholar 

  • Pacifici, E.H.K., McLeod, L.L. and Sevanian, A. (1993) Lipid hydroperoxide-induced peroxidation and turnover of endothelial cell phospholipids. Free Rad. Biol. Med., in press.

    Google Scholar 

  • Pacifici, R.E. and Davies, K.J.A. (1991) Selective proteolysis of oxidatively modified proteins by macroxyproteinase (M.O.P.). In Oxidative Damage and Repair. Chemical, Biological, and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 364–372.

    Google Scholar 

  • Packer, L., Maguire, J., Mehlhorn, R., Serbinova, E. and Kagan, V. (1989) Mitochondria and microsomal membranes have a free radical reductase that prevents chromanoxyl radical accumulation. Biochem. Biophys. Res. Commun. 159, 229–235.

    PubMed  CAS  Google Scholar 

  • Paganga, G., Rice-Evans, C., Rule, R. and Leake, D. (1992) The interaction between ruptured erythrocytes and low-density lipoproteins. FEBS Lett. 303, 154–158.

    PubMed  CAS  Google Scholar 

  • Peinado, J., Sies, H. and Akerboom, T.P.M. (1989) Hepatic lipoate uptake. Arch. Biochem. Biophys. 273, 389–395.

    PubMed  CAS  Google Scholar 

  • Pryor, W.A. (1976) The role of free radication reactions in biological systems. In Free Radicals in Biology ( Pryor, W.A., ed.), Vol. I, Academic Press, New York, pp. 1–49.

    Google Scholar 

  • Pryor, W.A. (1986) Oxyradicals and related species: their formation, lifetimes, and reactions. Ann. Rev. Physiol. 48, 657–667.

    CAS  Google Scholar 

  • Pryor, W.A. (1988) Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: It has a rare combination of high electrophilicity, high ther mochemical reactivity, and a mode of production that can occur near DNA. Free Rad. Biol. Med. 4, 219–223.

    PubMed  CAS  Google Scholar 

  • Puppo, A., Cicchini, R., Aruoma, O.I., Bolli, R. and Halliwell, B. (1990) Scavenging of hypochlorous acid and of myoglobin-derived oxidants by the cardioprotective agent mercaptopropionylglycine. Free Rad. Res. Commun. 10, 371–381.

    CAS  Google Scholar 

  • Radi, R., Beckman, J.S., Bush, K.M. and Freeman, B.A. (1991a) Peroxynitrite oxidation of sulfhydryls. J. Biol. Chem. 266, 4244–4250.

    PubMed  CAS  Google Scholar 

  • Radi, R., Beckman, J.W., Bush, K.M. and Freeman, B.A. (1991b) Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288, 481–487.

    PubMed  CAS  Google Scholar 

  • Rao, S.I., Wilks, A. and Ortiz de Montellano, P.R. (1993) The roles of His-64, Tyr-103, Tyr-146, and Tyr-151 in the epoxidation of styrene and β-methylstyrene by recombinant sperm whale myoglobin. J. Biol. Chem. 268, 803–809.

    PubMed  CAS  Google Scholar 

  • Rice, R.H., Lee, Y.M. and Brown, W.D. (1983) Interaction of heme proteins with hydrogen peroxide: protein cross-linking and covalent binding of benzo[a]pyrene and 170-estradiol. Arch. Biochem. Biophys. 221, 417–427.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C. (1993) Personal communication.

    Google Scholar 

  • Rice-Evans, C.A. and Diplock, A.T. (1993) Current status of antioxidant therapy. Free Rad. Biol. Med. 15, 77–96.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C., Green, E., Paganga, G., Cooper, C. and Wrigglesworth, J. (1993) Oxidised low density lipoproteins induce iron release from activated myoglobin. FEBS Lett. 326, 177–182.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C., Okunade, G. and Khan, R. (1989) The suppression of iron release from activated myoglobin by physiological electron donors and by desferoxamine. Free Rad. Res. Commun. 7, 45–54.

    CAS  Google Scholar 

  • Richter, C., Park, J.W. and Ames, B.N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6455–6467.

    Google Scholar 

  • Richter, C. (1988) Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett. 241, 1–5.

    PubMed  CAS  Google Scholar 

  • Rivett, A.J. (1985) Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular proteases. J. Biol. Chem. 260, 300–305.

    PubMed  CAS  Google Scholar 

  • Rivett, A.J. (1989) The multicatalytic proteinase of mammalian cells. Arch. Biochem. Biophys. 268, 1–8.

    PubMed  CAS  Google Scholar 

  • Rivett, A.J. and Hare, J.F. (1987) Enhanced degradation of oxidized glutamine synthetase in vitro and after microinjection into hepatoma cells. Arch. Biochem. Biophys. 259, 423–430.

    PubMed  CAS  Google Scholar 

  • Rivett, A.J. and Levine, R.L. (1990) Metal catalysed oxidation of E. coli glutamine synthetase: correlation of structural and functional changes. Arch. Biochem. Biophys. 278, 26–34.

    PubMed  CAS  Google Scholar 

  • Romero, F.J., Ordonez, D., Arduini, A. and Cadenas, E. (1992) The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates. J. Biol. Chem. 267, 1680–1688.

    PubMed  CAS  Google Scholar 

  • Ross, D. and Moldeus, P. (1986) Thiyl radicals—Their generation and further reactions. In Biological Reactive Intermediates III. Mechanisms of Action in Animal Models and Human Disease ( Kocsis, J.J., Jollow, D.J., Witmer, C.M., Nelson, J.P. and Snyder, R., eds.), Plenum Press, New York, pp. 329–335.

    Google Scholar 

  • Rougée, M. and Bensasson, R. (1986) Détermination des constantes de vitesse de désactivation de l’oxygéne singulet (Ag) en presence de biomolécules. C. R. Acad. Sci. Paris 20, 1223–1226.

    Google Scholar 

  • Russell, G.A. (1957) Deuterio-isotope effects in the autoxidation of aralkyl hydrocarbons. Mechanism of the interaction of peroxy radicals. J. Am. Chem. Soc. 79, 3871–3877.

    CAS  Google Scholar 

  • Saran, M., Michel, C. and Bors, W. (1990) Reaction of NO with O2-. Implications for the action of endothelium-derived relaxing factor (EDRF). Free Rad. Res. Commun. 10, 221–226.

    CAS  Google Scholar 

  • Sawyer, D.T., Calderwood, T.S., Johlman, C.L. and Wilkins, C.L. (1985a) Oxidation by superoxide anion of catechols, ascorbic acid, hydrophenazine, and reduced flavins to their respective anion radicals. A common mechanism with a sequential proton-hydrogen atom transfer. J. Org. Chem. 50, 1409–1412.

    CAS  Google Scholar 

  • Sawyer, D.T., Roberts, J.L. Jr., Calderwood, T.S., Sugimoto, H. and McDowell, M.S. (1985b) Reactivity and activation of dioxygen-derived species in aprotic media (a model matrix for biomembranes). Phil. Trans. R. Soc. London B311, 483–503.

    CAS  Google Scholar 

  • Schmidt, U., Grafen, P., Altland, K. and Goedde, H.W. (1969) Biochemistry and chemistry of lipoic acids. Adv. Enzymol. 32, 423–467.

    PubMed  CAS  Google Scholar 

  • Schóneich, C., Asmus, K.-D., Dillinger, U. and von Bruchhausen, F. (1989) Thiyl radical attack on polyunsaturated fatty acids: a possible route to lipid peroxidation. Biochem. Biophys. Res. Commun. 161, 113–120.

    PubMed  Google Scholar 

  • Scholich, H., Murphy, M.E. and Sies, H. (1989) Antioxidant activity of dihydrolipoate against microsomal lipid peroxidation and its dependence on α-tocopherol. Biochim. Biophys. Acta 1001, 256–261.

    PubMed  CAS  Google Scholar 

  • Schóneich, C., Dillinger, U., von-Bruchhausen, F. and Asmus, K.-D. (1992) Oxidation of polyunsaturated fatty acids and lipids through thiyl and sulfonyl radicals: reaction kinetics, influence of oxygen and structure of thiyl radicals. Arch. Biochem. Biophys. 292, 456–467.

    PubMed  Google Scholar 

  • Serbinova, E., Reznick, S.K.A.Z. and Packer, L. (1992) Thioctic acid protects against ischemia-reperfusion injury in the isolated perfused Langendorf heart. Free Rad. Res. Commun. 17, 49–58.

    CAS  Google Scholar 

  • Sevanian, A. (1991) Lipid damage and repair. In Oxidative Damage and Repair: Chemical, Biological, and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 543–549.

    Google Scholar 

  • Simic, M.G. (1991) Antioxidant compounds: an overview. In Oxidative Damage and Repair. Chemical, Biological, and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 47–56.

    Google Scholar 

  • Simic, M.G. and Jovanovic, S.V. (1989) Antioxidation mechanisms of uric acid. J. Am. Chem. Soc. 111, 5778–5782.

    CAS  Google Scholar 

  • Simpson, K.E. and Dean, R.T. (1990) Stimulatory and inhibitory actions of proteins and amino acids on copper-catalysed free radical generation in the bulk phase. Free Rad. Res. Commun. 10, 303–312.

    CAS  Google Scholar 

  • Snyder, L.M., Fortier, N.L., Leb, L., McKenney, J., Trainor, J., Sheerin, H. and Mohands, N. (1988) The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes. Biochim. Biophys. Acta 937, 229–240.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R. (1990α) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Rad. Biol. Med. 9, 315–325.

    Google Scholar 

  • Stadtman, E.R. (1990b) Covalent modification reactions are marking steps in protein turnover. Biochemistry 29, 6323–6331.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R. (1991) Protein damage and repair. In Oxidative Damage and Repair: Chemical, Biological, and Medical Aspects ( Davies, K.J.A., ed.), Pergamon Press, New York, pp. 348–354.

    Google Scholar 

  • Starke-Reed, P.E. and Oliver, C.N. (1989) Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys. 275, 559–567.

    PubMed  CAS  Google Scholar 

  • Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C. and Witztum, J.L. (1989) Beyond cholesterol. Modifications of low-density liprotein that increase atherogenicity. New Engl. J. Med. 320, 915–924.

    PubMed  CAS  Google Scholar 

  • Stocker, R., Bowry, V.W., and Frei, B. (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol. Proc. Natl. Acad. Sci. USA 88, 1646–1650.

    PubMed  CAS  Google Scholar 

  • Stocker, R. and Frei, B. (1991) Endogenous antioxidant defences in human blood plasma. In Oxidative Stress: Oxidants and Antioxidants ( Sies, H., ed.), Academic Press, London, pp. 213–244.

    Google Scholar 

  • Surdhar, P.S. and Armstrong, D.A. (1986) Redox potentials of some sulfur-containing radicals. J. Rhys. Chem. 90, 5915–5917.

    CAS  Google Scholar 

  • Suzuki, Y., Tsuchiya, M. and Packer, L. (1991) Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Rad. Res. Commun. 15, 255–263.

    CAS  Google Scholar 

  • Tamba, M. and Quintiliani, M. (1984) Kinetic studies of reactions involved hydrogen transfer from glutathione to carbohydrate radicals. Radiat. Phys. Chem. 23, 259–263.

    CAS  Google Scholar 

  • Tamura, M., Oshino, N., Chance, B. and Silver, I. (1978) Optical measurements of intracellular oxygen concentration of rat heart in vitro. Arch. Biochem. Biophys. 191, 8–22.

    PubMed  CAS  Google Scholar 

  • Teebor, G.W., Boorstein, R.J. and Cadet, J. (1988) The repairability of oxidative free radical mediated damage to DNA: a review. Int. J. Radiat. Biol. 43, 131–150.

    Google Scholar 

  • Tew, D. and Ortiz de Montellano, P.R. (1988) The myoglobin protein radical. Coupling of Tyr-103 in the H2O2-mediated cross-linking of sperm whale myoglobin. J. Biol. Chem. 263, 17880–17886.

    PubMed  CAS  Google Scholar 

  • Turner, J.J.O., Rice-Evans, C.A., Davies, M.J. and Newman, E.S. (1990) Free radicals, myocytes and reperfusion injury. Biochem. Soc. Trans. 18, 1056–1059.

    PubMed  CAS  Google Scholar 

  • Turner, J.J.O., Rice-Evans, C.A., Davies, M.J. and Newman, E.S.R. (1991) The formation of free radicals by cardiac myocytes under oxidative stress and the effects of electron-donating drugs. Biochem. J. 277, 833–837.

    PubMed  CAS  Google Scholar 

  • Uyeda, M. and Peisach, J. (1981) Ultraviolet difference spectroscopy of myoglobin: assignment of pK values of tyrosyl phenolic groups and the stability of the ferryl derivatives. Biochemistry 20, 2028–2035.

    PubMed  CAS  Google Scholar 

  • Valtersson, C., van Duyn, G., Verkleij, A.J., Chojnacki, T., de Kruijff, B. and Dallner, G. (1985) The influence of dolichol, dolichol esters, and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes. J. Biol. Chem. 260, 2742–2751.

    PubMed  CAS  Google Scholar 

  • van Kuijk, F.J.G.M., Sevanian, A., Handelman, G. and Dratz, E.A. (1987) A new role for phospholipase A2. Trends Biochem. Sci. 12, 31–34.

    Google Scholar 

  • von Sonntag, C. (1987) The Chemical Basis of Radiation Biology, Taylor & Francis, London.

    Google Scholar 

  • Wallace, G.C., Gulate, P. and Fukuto, J.M. (1991) N-Hydroxy-L-arginine: A novel arginine analog capable of causing vasodilation in bovine intrapulmonary artery. Biochem. Biophys. Res. Commun. 176, 528–534.

    PubMed  CAS  Google Scholar 

  • Walters, F.P., Kennedy, F.G. and Jones, D.P. (1983) Oxidation of myoglobin in isolated adult rat cardiac myocytes by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid. FEBS Lett. 163, 292–296.

    PubMed  CAS  Google Scholar 

  • Wardman, P. (1988) Conjugation and oxidation of glutathione via thiyl free radicals. In Glutathione Conjugation. Mechanisms and Biological Significance ( Sies, H. and Ketterer, B., eds.), Academic Press, London, pp. 44–72.

    Google Scholar 

  • Wardman, P. (1990a) Thiol reactivity towards drugs and radicals: some implications in the radiotherapy and chemotherapy of cancer. In Sulfur-centred Reactive Intermediates in Chemistry and Biology ( Chatgilialoglu, C. and Asmus, K.-D., eds.), Plenum Press, New York, pp. 415–427.

    Google Scholar 

  • Wardman, P. (1990b) Bioreductive activation of quinones: redox properties and thiol reactivity. Free Rad. Res. Commun. 8, 219–229.

    CAS  Google Scholar 

  • White, K.A. and Marietta, M.A. (1992) Nitric oxide synthase is a cytochrome P450 type hemoprotein. Biochemistry 31, 6627–6631.

    PubMed  CAS  Google Scholar 

  • Wilks, A. and Ortiz de Montellano, P.R. (1992) Intramolecular translocation of the protein radical formed in the reaction of recombinant sperm whale myoglobin with H2O2. J. Biol. Chem. 267, 8827–8833.

    PubMed  CAS  Google Scholar 

  • Willson, R.L. (1970) Pulse radiolysis studies of electron transfer in aqueous disulphide solutions. Chem. Commun., p. 1425–1426.

    Google Scholar 

  • Willson, R.L., Dunster, C.A., Forni, L.G., Gee, C.A. and Kittridge, K.J. (1985) Organic free radicals and proteins in biochemical injury: electron- or hydrogen-transfer reactions? Phil. Trans. R. Soc. Lond. B 311, 545–563.

    CAS  Google Scholar 

  • Wilson, I., Wardman, P., Cohen, G.M. and d’Arcy-Doherty, M. (1986) Reductive role of glutathione in the redox cycling of oxidizable drugs. Biochem. Pharmacol. 35, 21–22.

    PubMed  CAS  Google Scholar 

  • Winterbourn, C.C. (1981) Hydroxyl radical production in body fluids. Roles of metal ions, ascorbate and superoxide. Biochem. J. 198, 125–131.

    PubMed  CAS  Google Scholar 

  • Winterbourn, C.C. (1989) Inhibition of autoxidation of divicine and isouramil by the combination of superoxide dismutase and reduced glutathione. Arch. Biochem. Biophys. 271, 447–455.

    PubMed  CAS  Google Scholar 

  • Winterbourn, C.C., Gutteridge, J.M.C. and Halliwell, B. (1985) Doxorubicin-dependent lipid peroxidation at low partial pressures of O2. J. Free Rad. Biol. Med. 1, 43–49.

    CAS  Google Scholar 

  • Winterbourn, C.C. and Munday, R. (1989) Glutathione-mediated redox cycling of alloxan: mechanisms of superoxide dismutase inhibition and of metal-catalysed OH formation. Biochem. Pharmacol. 38, 271–277.

    PubMed  CAS  Google Scholar 

  • Winterbourn, C.C. and Munday, R. (1990) Concerted action of reduced glutathione and superoxide dismutase in preventing redox cycling of dihydropyrimidines, and their role in antioxidant defence. Free Rad. Res. Commun. 8, 287–293.

    CAS  Google Scholar 

  • Wong, G.H.W. and Goeddel, D.V. (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242, 941–944.

    PubMed  CAS  Google Scholar 

  • Xu, F. and Hultquist, D.E. (1991) Coupling of dihydroriboflavin oxidation to the formation of the higher valence states of hemeproteins. Biochem. Biophys. Res. Commun. 181, 197–203.

    PubMed  CAS  Google Scholar 

  • Xu, F., Mack, C.P., Quandt, K.S., Shlafer, M., Massey, V. and Hultquist, D.E. (1993) Pyrroloquinoline quinone acts with flavin reductase to reduce ferry lmyoglobin in vitro and protects isolated heart from re-oxygenation injury. Biochem. Biophys. Res. Commun. 193, 434–439.

    PubMed  CAS  Google Scholar 

  • Yamada, T., Volkmer, C. and Grisham, M.B. (1991) The effects of sulfasalazine metabolites on hemoglobin-catalyzed lipid peroxidation. Free Rad. Biol. Med. 10, 41–49.

    PubMed  CAS  Google Scholar 

  • Yamauchi, R., Kato, K. and Ueno, Y. (1988) Formation of trimers of α-tocopherol and its model compound, 2,2,5,7,8-pentamethylchroman-6-ol, in autoxidizing methyl linoleate. Lipids 23, 779–783.

    PubMed  CAS  Google Scholar 

  • Yang, G., Candy, T.E.G., Boaro, M., Wilkin, H.E., Jones, P., Nazhat, N.B., Saadalla-Nazhat, R.A. and Blake, D.R. (1992) Free radical yields from the homolysis of peroxynitrous acid. Free Rad. Biol. Med. 12, 327–330.

    PubMed  CAS  Google Scholar 

  • Yang, W.D., De Bono, D. and Symons, M.C.R. (1993) The effects of myoglobin and apomyoglobin on the formation and stability of the hydroxyl radical adduct of 5,5’-dimethyl-l-pyrroline-iV-oxide. Free Rad. Res. Commun. 18, 99–106.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Chapman & Hall

About this chapter

Cite this chapter

Cadenas, E. (1995). Mechanisms of Oxygen Activation and Reactive Oxygen Species Detoxification. In: Ahmad, S. (eds) Oxidative Stress and Antioxidant Defenses in Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9689-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9689-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9691-2

  • Online ISBN: 978-1-4615-9689-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics