Skip to main content

Transition-Metal Oxide Electrocatalysts for O2 Electrodes: The Pyrochlores

  • Chapter
Electrochemistry in Transition

Abstract

There has been wide interest in the search for bifunctional oxygen electrocatalysts which can reversibly or nearly reversibly catalyze both the reduction and the generation of O2. There are two possible approaches: (1) use of a single bifunctional electrocatalyst which promotes both reactions; and (2) use of separate electrocatalysts for the two reactions within one electrode. Both approaches have been tried by various groups. The use of separate catalysts for these two functions provides a much wider range of materials for consideration. In this chapter, however, the first approach will be emphasized, with the focus on the transition-metal pyrochlore oxides, particularly the lead ruthenate pyrochlore and related materials. These pyrochlores have metallic conductivity, can be prepared in very high area forms, and also show high electrocatalytic activity for both O2 reduction and generation.(1–4) The nature of the electrocatalysis is also very much dependent on the surface electronic properties of the catalyst, which in turn are dependent to some extent on the bulk properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. S. Horowitz, J. M. Longo, and J. I. Haberman, U.S. Patent 4,124,539 (1978).

    Google Scholar 

  2. H. S. Horowitz, J. M. Longo, and H. H. Horowitz, J. Electrochem. Soc. 130, 1851 (1983).

    Article  CAS  Google Scholar 

  3. H. S. Horowitz, J. M. Longo, H. H. Horowitz, and J. T. Lewandowski, in: Solid State Chemistry in Catalysis (R. K. Grasselli and J. F. Brazdil, eds.), ACS Symposium Series 279, pp. 143–163, American Chemical Society, Washington, D.C. (1985).

    Chapter  Google Scholar 

  4. J. Prakash, D. Tryk, and E. Yeager, J. Power Sources 29, 413 (1990).

    Article  CAS  Google Scholar 

  5. R. A. Beyerlein, H. S. Horowitz, and J. M. Longo, J. Solid State Chem. 72, 2 (1988).

    Article  CAS  Google Scholar 

  6. H. S. Horowitz, J. M. Longo, and J. T. Lewandowski, U.S. Patent 4,129,525 (1978).

    Google Scholar 

  7. H. H. Horowitz, H. S. Horowitz, and J. M. Longo, in: Electrocatalysis (W. E. O’Grady, P. N. Ross, and F. G. Will, eds.), pp. 285–290, The Electrochemical Society, Pennington, New Jersey (1982).

    Google Scholar 

  8. H. S. Horowitz, J. M. Longo, and J. T. Lewandowski, U.S. Patent 4,176,094 (1979).

    Google Scholar 

  9. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  CAS  Google Scholar 

  10. J. M. Longo, P. M. Raccah, and J. B. Goodenough, Mater. Res. Bull. 4, 191 (1969).

    Article  CAS  Google Scholar 

  11. P. A. Cox, R. G. Egdell, J. B. Goodenough, A. Hamnett, and C. C. Naish, J. Phys. C: Solid State Phys. 16, 6221 (1983).

    Article  CAS  Google Scholar 

  12. J. J. Randall and R. Ward, J. Am. Chem. Soc. 81, 2629 (1959).

    Article  CAS  Google Scholar 

  13. A. W. Sleight, Mater. Res. Bull 6, 775 (1971).

    Article  CAS  Google Scholar 

  14. H. S. Horowitz, J. M. Longo, and J. T. Lewandowski, U.S. Patent 4,203,871 (1980).

    Google Scholar 

  15. M. Shingler, W. Aldred, D. Tryk, and E. Yeager, Final Report: Catalysts for Ultrahigh Current Density Oxygen Cathodes for Space Fuel Cell Applications, Contract No. NAG3-694 with NASA— Lewis Research Center, prepared by Case Center for Electrochemical Sciences, Case Western Reserve University, May, 1990.

    Google Scholar 

  16. A. F. Wells, Structural Inorganic Chemistry, 5th ed., pp. 129, 258, Clarendon Press, Oxford (1984).

    Google Scholar 

  17. R. A. McCauley, J. Appl. Phys. 51, 290 (1980).

    Article  CAS  Google Scholar 

  18. A. W. Sleight, Inorg. Chem. 7, 1704 (1968).

    Article  CAS  Google Scholar 

  19. R. A. Beyerlein, H. S. Horowitz, J. M. Longo, M. E. Leonowicz, J. D. Jorgensen, and F. J. Rotella, J. Solid State Chem. 51, 253 (1984).

    Article  CAS  Google Scholar 

  20. A. W. Sleight and R. J. Bouchard, in: Solid State Chemistry, NBS Special Publication 364 (R. S. Roth and S. J. Schneider, eds.), pp. 227–232, National Bureau of Standards, U.S. Dept. of Commerce, Washington, D.C. (1972).

    Google Scholar 

  21. A. W. Sleight, Mater Res. Bull. 4, 377 (1969).

    Article  CAS  Google Scholar 

  22. R. J. Bouchard and J. L. Gillson, Mater. Res. Bull. 6, 669 (1971).

    Article  CAS  Google Scholar 

  23. W. Y. Hsu, R. V. Kasowski, T. Miller, and T. C. Chiang, Appl. Phys. Lett. 52, 792 (1988).

    Article  CAS  Google Scholar 

  24. P. R. van Loan, Ceram. Bull. 51, 231 (1972).

    Google Scholar 

  25. V. B. Lazarev and L. S. Shlaplygin, Russ. J. Inorg. Chem., 23, 163 (1978).

    Google Scholar 

  26. G. Mayer-von Kurthy, W. Wischert, R. Kiemel, S. Kemmler-Sack, R. Gross, and R. P. Huebener, J. Solid State Chem. 79, 34 (1989).

    Article  Google Scholar 

  27. R. Aleonard, E. F. Bertaut, M. C. Montmory, and R. Pauthenet, J. Appl Phys. 33(Suppl), 1205 (1962).

    Article  CAS  Google Scholar 

  28. J. Rosset and D. K. Ray, J. Chem. Phys. 37, 1017 (1962).

    Article  CAS  Google Scholar 

  29. R. G. Egdeli, J. B. Goodenough, A. Hamnett, and C. C. Naish, J. Chem. Soc, Faraday Trans. 1, 79, 893 (1983).

    Article  Google Scholar 

  30. J. A. R. van Veen, J. M. van der Eijk, R. de Ruiter, and S. Huizinga, Electrochim. Acta 33, 51 (1988).

    Article  Google Scholar 

  31. J. B. Goodenough, R. Manoharan, and M. Paranthaman, J. Am. Chem. Soc. 112 2076 (1990).

    Article  CAS  Google Scholar 

  32. L. D. Burke and O. J. Murphy, J. Electroanal Chem. 109, 199 (1980).

    Article  CAS  Google Scholar 

  33. A. Ardizzone, G. Fregonara, and S. Trassatti, Electrochim. Acta 35, 263 (1990).

    Article  CAS  Google Scholar 

  34. L. D. Burke and O. J. Murphy, J. Electroanal. Chem. 96, 19 (1979).

    Article  CAS  Google Scholar 

  35. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, pp. 343–349, Pergamon, Oxford (1966).

    Google Scholar 

  36. J. F. Llopis and I. M. Tordesillas, in: Encyclopedia of Electrochemistry of the Elements, Vol. VI (A. J. Bard, ed.) pp. 277–298, Marcel Dekker, New York (1976).

    Google Scholar 

  37. K. W. Lam, K. E. Johnson, and D. G. Lee, J. Electrochem. Soc. 125, 1069 (1978).

    Article  CAS  Google Scholar 

  38. L. D. Burke and D. P. Whelan, J. Electroanal. Chem. 103, 179 (1987).

    Article  Google Scholar 

  39. F. Colom, in: Standard Potentials in Aqueous Solution (A. J. Bard, R. Parsons, and J. Jordan, eds.), pp. 413–427, Marcel Dekker, New York (1985).

    Google Scholar 

  40. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, pp. 485–492, Pergamon, Oxford, (1966).

    Google Scholar 

  41. T. F. Sharpe, in: Encyclopedia of Electrochemistry of the Elements, Vol. I (A. J. Bard, ed.), pp. 235–347, Marcel Dekker, New York (1973).

    Google Scholar 

  42. Z. Galus, in: Standard Potentials in Aqueous Solution (A. J. Bard, R. Parsons, and J. Jordan, eds.), pp. 220–235, Marcel Dekker, New York (1985).

    Google Scholar 

  43. C. N. Welch, U.S. Patent 3,801,490 (1974).

    Google Scholar 

  44. M. R. St. John, U.S. Patent 4,395,316 (1983).

    Google Scholar 

  45. T. R. Felthouse, J. Am. Chem. Soc. 109, 7566 (1987).

    Article  CAS  Google Scholar 

  46. O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem. 43, 2812 (1965).

    Article  CAS  Google Scholar 

  47. P. C. Ford, J. R. Kuempel, and H. Taube, Inorg. Chem. 7, 1976 (1968).

    Article  CAS  Google Scholar 

  48. C. Cha, Wuhan University, Wuhan, People’s Republic of China, personal communication.

    Google Scholar 

  49. M. S. Hossain, D. Tryk, and A. Gordon, Extended Abstracts, 171st Meeting of the Electrochemical Society, Philadelphia, May 1987, pp. 466–467.

    Google Scholar 

  50. J. Prakash, D. Tryk, W. Aldred, and E. Yeager, unpublished results.

    Google Scholar 

  51. L. B. Berk and D. Zuckerbrod, in: The Electrochemistry of Carbon (S. Sarangapani, J. R. Akridge, and B. Schumm, eds.), pp. 238–250, The Electrochemical Society, Pennington, New Jersey (1984).

    Google Scholar 

  52. D. Tryk, W. Aldred, and E. Yeager, in: The Electrochemistry of Carbon (S. Sarangapani, J. R. Akridge, and B. Schumm, eds.), pp. 192–220, The Electrochemical Society, Pennington, New Jersey (1984).

    Google Scholar 

  53. P. N. Ross and M. Sattler, J. Electrochem. Soc. 135, 1464 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Prakash, J., Tryk, D., Aldred, W., Yeager, E. (1992). Transition-Metal Oxide Electrocatalysts for O2 Electrodes: The Pyrochlores. In: Murphy, O.J., Srinivasan, S., Conway, B.E. (eds) Electrochemistry in Transition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9576-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9576-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9578-6

  • Online ISBN: 978-1-4615-9576-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics