Skip to main content

Importance of Electrical Double Layer in Technological Applications

  • Chapter
Electrochemistry in Transition

Abstract

Electrochemical technology is applied to a large number of products in the modern electronics industry.(1–3) Various manufacturing processes leading to important commercial implementations in the computer industry are based on the study, understanding, and direct utilization of double-layer phenomena. The objective of this chapter is to describe in some detail how double-layer theory is being utilized for the development of two rather different products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. T. Rmankiw, Oberfläche-Surfaces 25, 238 (1984).

    Google Scholar 

  2. D. P. Seraphim and I. Feinberg, IBM J. Res. Dev. 25, 617 (1981).

    Article  Google Scholar 

  3. D. P. Seraphim, R. Lasky, and C. Yu-Li, Principles of Electronic Packaging, McGraw-Hill, New York, (1989).

    Google Scholar 

  4. C. J. Sambucetti, J. Varsic, and W. Laboy, in: Proceedings of the Symposium on Electrochemical Technology in Electronics, Honolulu, Hawaii, Proceedings Vol. 88-23, pp. 59-62, The Electrochemical Society, Pennington, New Jersey (1987).

    Google Scholar 

  5. J. O.’M Bockris, M. A. V. Devanathan, and K. Müller, Proc. Roy. Soc. (London), Ser. A 274, 55 (1963).

    Article  CAS  Google Scholar 

  6. W. N. Hansen, J. Electroanal. Chem. 150, 133 (1983).

    Article  CAS  Google Scholar 

  7. D. C. Grahame, Chemistry 41, 441 (1947).

    CAS  Google Scholar 

  8. H. Wroblowa, Z. Kovac, and J. O.’M. Bockris, Trans. Faraday Soc. 61, 1523 (1965).

    Article  CAS  Google Scholar 

  9. M. A. V. Devanathan and J. M. Fernando, Trans. Faraday Soc. 58, 368 (1962).

    Article  Google Scholar 

  10. D. C. Grahame, J. Am. Chem. Soc. 76, 4819 (1954).

    Article  CAS  Google Scholar 

  11. G. Valette, J. Electroanal. Chem. 122, 285 (1981).

    CAS  Google Scholar 

  12. J. G. Gordon II, O. R. Melroy, and L. Blum, in: Diffusion at Interfaces: Microscopic Concepts (M. Grunze, H. J. Kreuzer, and J. J. Weimer, eds.), Springer Ser. Surf Sci. 12, 172 (1988).

    Google Scholar 

  13. R. G. Sonnenfeld, J. Schneir, and P. K. Hansma, in: Modem Aspects of Electrochemistry, No. 21 (R. E. White, J. O.’M. Bockris, and B. E. Conway, eds.), pp. 1-28, Plenum Press, New York (1990).

    Google Scholar 

  14. J. P. Badiali, M. L. Rosenberg, F. Vericat, and L. Blum, J. Electroanal. Chem. 158, 253 (1983).

    Article  CAS  Google Scholar 

  15. W. Schmickler and D. Henderson, J. Chem. Phys. 80, 3381 (1984); 85, 1650 (1986).

    Article  CAS  Google Scholar 

  16. Z. Kovac and C. J. Sambucetti, in: Colloids and Surfaces in Reprographic Technology (M. Hair and M. D. Crouchep, eds.), ACS Symposium Series 200, p. 543, American Chemical Society, Washington, D.C. (1982).

    Chapter  Google Scholar 

  17. M. Paunovic and I. Ohno (eds.), Proceedings of the Symposium on Electroless Deposition of Metals, Proceedings Vol. 88-12, The Electrochemical Society, Pennington, New Jersey (1988).

    Google Scholar 

  18. W. Goldie, Metallic Coating of Plastic, Vol. 1, Electrochemical Publications Ltd., Middlesex, England (1968).

    Google Scholar 

  19. R. Sarc, J. Electrochem. Soc. 117, 864 (1970).

    Article  Google Scholar 

  20. M. Schlesinger and J. Kisel, in: Proceedings of the Symposium on Electroless Deposition of Metals (M. Paunovic and I. Ohno, eds.), p. 100, Proceedings Vol. 88-12, The Electrochemical Society, Pennington, New Jersey (1988).

    Google Scholar 

  21. R. L. Cohen, J. F. D’Amico, and K. W. West, J. Electrochem. Soc. 118, 2042 (1971).

    Article  CAS  Google Scholar 

  22. R. L. Cohen and K. W. West, J. Electrochem. Soc. 119, 433 (1972).

    Article  CAS  Google Scholar 

  23. C. R. Shipley, Jr., U.S. Patent 3,011,920 (1961).

    Google Scholar 

  24. J. Horkans, K. Jim, C. McGrath, and L. T. Romankiw, J. Electrochem. Soc. 134, 300 (1987).

    Article  CAS  Google Scholar 

  25. R. J. Zeblisky, U.S. Patent 3,682,671 (1972).

    Google Scholar 

  26. J. Horkans and C. J. Sambucetti, IBM J. Res. Dev. 28, 690 (1984).

    Article  Google Scholar 

  27. E. J. M. O’Sullivan, J. Horkans, J. R. White, and J. M. Roldan, IBM J. Res. Dev. 32, 591 (1988).

    Article  Google Scholar 

  28. R. I. Jensen, J. P. Cummings, and H. Vora, Proceedings of 34th Electronic Components Conference, p. 73 Institute of Electrical and Electronics Engineers, New York (1984).

    Google Scholar 

  29. F. A. Lowenheim (ed.), Modern Electroplating, Chapter 19, McGraw-Hill, New York, (1978).

    Google Scholar 

  30. R. L. Cohen and K. W. West, J. Electrochem. Soc. 120, 502 (1973).

    Article  CAS  Google Scholar 

  31. R. L. Cohen and R. L. Meeks, J. Colloid Interface Sci. 55, 156 (1976).

    Article  CAS  Google Scholar 

  32. R. L. Cohen and K. W. West, Chem. Phys. Lett. 16, 128 (1972).

    Article  CAS  Google Scholar 

  33. E. Matijevic, A. M. Poskanzer, and P. Zuman, Plating 62, 958 (1975).

    CAS  Google Scholar 

  34. R. L. Meek, J. Electrochem. Soc. 122, 1177 (1975).

    Article  CAS  Google Scholar 

  35. U. Chaudhry, Du Pont Central Research Colloidal Laboratory, private communication (1985).

    Google Scholar 

  36. L. T. Romankiw, M. Slusarczuk, and D. Thompson, U.S. Patent 3,972,595 (1976).

    Google Scholar 

  37. G. J. Fan and R. A. Toupin, U.S. Patent 3,805,272 (1974); 3,916,419 (1975).

    Google Scholar 

  38. G. J. Fan, W. Hurley, D. C. W. Lo, and J. W. Mitchell, U.S. Patent 4,068,240 (1978).

    Google Scholar 

  39. R. E. Rosensweig, U.S. Patent 3,612,584 (1971); 3,620,630 (1971); 3,734,578 (1973).

    Google Scholar 

  40. S. S. Pappel, U.S. Patent 3,215,572 (1965).

    Google Scholar 

  41. R. Kaiser and G. Miskolczy, J. Appl. Phys. 41, 1064 (1970).

    Article  CAS  Google Scholar 

  42. S. E. Khalafalla and G. W. Reimers, U.S. Patent 3,843,540 (1974).

    Google Scholar 

  43. Z. Kovac and B. A. Gardineer, U.S. Patent 3,990,981 (1976).

    Google Scholar 

  44. Z. Kovac and C. J. Sambucetti, U.S. Patent 4,107,063 (1978).

    Google Scholar 

  45. S. E. Khalafalla and G. W. Reimers, IEEE Trans. Magn. MAG-16, 178 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Kovac, Z., Sambucetti, C.J. (1992). Importance of Electrical Double Layer in Technological Applications. In: Murphy, O.J., Srinivasan, S., Conway, B.E. (eds) Electrochemistry in Transition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9576-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9576-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9578-6

  • Online ISBN: 978-1-4615-9576-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics