Skip to main content

Abstract

Photoelectrochemistry is one of the oldest branches of electrochemistry. The development of this field can be divided into three periods. The first period started with Edmond Becquerel’s observation in 1859 of the flow of current at any illuminated silver electrode immersed in chloride solution.(1) The next period began in 1955, with the work of Brattain and Garrett on electrochemical photopotential.(2) In that period several experimental and theoretical papers were published. Dewald was the first to study the electrochemical behavior of wide-band-gap semiconductors,(3) and Green formulated the first i = i(E) dependency for photoelectrodes.(4) Gerischer published several papers on the thermodynamics, chemical stability, and behavior of different redox systems at the semiconductor/solution interface.(5,6) Myamlin and Pleskov gave the first systematic description of the electrochemistry of semiconducting materials.Memming published work on the capacitance of semiconductor electrodes.(8) In 1960 Williams pointed out that semiconductor electrodes can be used in practical devices.(9) This period in the history of photoelectrochemistry ended at the turning point in the sixties and seventies, when Fujishima and Honda demonstrated the possibility of self-driven water splitting in photoelectrochemical cells.(10) The possibility of cheap production of hydrogen fuel greatly increased interest in the field of photoelectrochemistry. In the last decade further new applications of photoelectrochemistry have been developed, for example, reduction of CO2,(11) oxidation of H2S,(12) and redox reaction of HCOOH.(13–17) In the middle of the eighties, a theoretical interpretation of the observation of quantum yields exceeding unity(18–21) was proposed.(21,22) In the next section of this chapter, results from the investigation of the dependence of the hydrogen evolution reaction (HER) on the state of the semiconductor surface will be discussed. The model explaining the dependence of the rate of the HER on surface properties, that is, a model of photoelectrocatalysis, will be given. In the last part of this chapter, results on photoelectroreduction of formic acid will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Becquerel, C. R. Acad. Sci. 9, 561 (1839).

    Google Scholar 

  2. W. H. Brattain and C. G. B. Garrett, Bell Syst. Tech. J. 34, 129 (1955).

    Google Scholar 

  3. J. F. Dewald, in: Semiconductors (N. B. Hannay, ed.), Reinhold, New York (1957).

    Google Scholar 

  4. M. Green, in: Modem Aspects of Electrochemistry, No. 2 (J. O’M. Bockris, ed.), p. 343, Butterworths, London (1959).

    Google Scholar 

  5. H. Gerischer, in: Advances in Electrochemistry and Electrochemical Engineering Vol. 1 (P. Delahay, ed.), p. 139, Interscience, New York (1961).

    Google Scholar 

  6. H. Gerischer, in: Physical Chemistry, An Advanced Treatise, Vol. 9 (H. Eyring, ed.), p. 463, Academic Press, New York (1970).

    Google Scholar 

  7. W. A. Myamlin and J. V. Pleskov, Electrochemistry of Semiconductors, Nauka, Moscow (1965).

    Google Scholar 

  8. R. Memming, J. Electrochem. Soc. 116, 785 (1969).

    Article  CAS  Google Scholar 

  9. R. Williams, J. Chem. Phys. 32, 1505 (1960).

    Article  CAS  Google Scholar 

  10. A. Fujishim and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  11. M. Halmann, Nature 275, 115 (1978).

    Article  CAS  Google Scholar 

  12. M. Gratzel (ed.). Energy Resources through Photochemistry and Catalysis, p. 25, Academic Press, New York (1983).

    Google Scholar 

  13. J. H. Kennedy and D. D’nwald, J. Electrochem. Soc. 130, 2013 (1983).

    Article  CAS  Google Scholar 

  14. M. Matsamura, M. Hiramoto, T. Iehara, and H. Tsubomura, J. Phys. Chem. 88, 248 (1989).

    Article  Google Scholar 

  15. M. H. Miles, A. N. Fletcher, G. E. Manis, and L. O. Spreer, J. Electroanal. Chem. 190, 157 (1985).

    Article  CAS  Google Scholar 

  16. M. Szklarczyk, J. Sobkowski, and J. Pacocha, J Electroanal. Chem. 215, 307 (1986).

    Article  CAS  Google Scholar 

  17. M. Szklarczyk, Electrochim. Acta 32, 1257 (1987).

    Article  CAS  Google Scholar 

  18. F. Beck and H. Gerischer, Z. Elektrochem., 63, 500 (1969).

    Google Scholar 

  19. H. Tamura, H. Yoneyama, C. Iwakura, H. Sakamoto, and S. Murakami, J. Electroanal. Chem. 80, 357 (1977).

    Article  CAS  Google Scholar 

  20. M. Szklarczyk and J. O’M. Bockris, J. Phys. Chem. 88, 1808 (1984).

    Article  CAS  Google Scholar 

  21. M. Szklarczyk and J. O’M. Bockris, J Phys. Chem. 88, 5241 (1984).

    Article  CAS  Google Scholar 

  22. M. Szklarczyk and R. E. Allen, Appl. Phys. Lett. 49, 1028 (1986).

    Article  CAS  Google Scholar 

  23. Y. Nakato, S. Tonomura, and H. Tsubomura, Ber. Bunsenges, Phys. Chem. 80, 1289 (1976).

    CAS  Google Scholar 

  24. K. Ohashi, J. McCann, and J. O’M. Bockris, Energy Res. Abstr. 1, 259 (1977).

    Article  CAS  Google Scholar 

  25. W. Kautek, J. Gobrecht, and H. Gerischer, Ber. Bunsenges, Phys. Chem. 84, 1034 (1980).

    CAS  Google Scholar 

  26. A. Heller and R. G. Vadimsky, Phys. Rev. Lett. 46, 1153 (1981).

    Article  CAS  Google Scholar 

  27. A. Heller, E. Aharon-Shalom, W. A. Bonner, and B. Miller, J. Am. Chem. Soc. 104, 6942 (1982).

    Article  CAS  Google Scholar 

  28. R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, J. Am. Chem. Soc. 104, 467 (1982).

    Article  CAS  Google Scholar 

  29. M. Szklarczyk and J. O’M. Bockris Appl. Phys. Lett. 2, 1035 (1983).

    Article  Google Scholar 

  30. M. Szklarczyk and J. O’M. Bockris, Int. J. Hydrogen Energy 9, 831 (1984).

    Article  CAS  Google Scholar 

  31. M. Szklarczyk, J. O’M. Bockris, V. Brusic, and G. Sparrow, Int. J. Hydrogen Energy 9, 707 (1984).

    Article  CAS  Google Scholar 

  32. M.A. Butler and D. S. Ginley, Extended Abstracts, 163rd Meeting of the Electrochemical Society, San Francisco, May 8–13, 1983, Abstract 723.

    Google Scholar 

  33. M. Szklarczyk, A. Q. Contractor, J. O’M. Bockris, V. Y. Young, L. A. Bernard and G. Sparrow, Sol Energy Mater. 11, 1051 (1984).

    Article  Google Scholar 

  34. H. Kita J. Electrochem. Soc. 113, 1095 (1966).

    Article  CAS  Google Scholar 

  35. V. V. Gorodetskii and B. E. Nieuwenhuys, Surf Sci. 108, 225 (1981).

    Article  CAS  Google Scholar 

  36. G. F. Voronina, L. A. Larin, and T. V. Kalish, Elektrokhimiya 14, 297 (1978).

    CAS  Google Scholar 

  37. F. C. Tompkins, in: The Solid-Gas Interface, Vol. 2 (E. A. Flood, ed.), p. 765, Marcel Dekker, New York (1967).

    Google Scholar 

  38. R. V. Culver and F. C. Tompkins in: Advances in Catalysis and Related Subjects, Vol. XI (D. D. Eley, P. W. Selwood, and P. B. Weisz, eds.), p. 67, Academic Press, London (1959).

    Google Scholar 

  39. L. Whalley, B. J. Davis, and L. Moss, Trans. Faraday Soc. 66, 3143 (1970).

    Article  CAS  Google Scholar 

  40. R. H. Wilson, J. Appl. Phys. 48, 4292 (1977).

    Article  CAS  Google Scholar 

  41. S. Trasatti, J. Electroanal. Chem. 39, 163 (1972).

    Article  CAS  Google Scholar 

  42. A. Q. Contractor, M. Szklarczyk, and J. O’M. Bockris, J. Electroanal. Chem. 157, 175 (1983).

    CAS  Google Scholar 

  43. P. G. Russel, N. Kovac, S. Srinivasan, and M. Steinberg, J. Electrochem. Soc. 124, 1329 (1977).

    Article  Google Scholar 

  44. A. Czerwinski and J. Sobkowski, J. Electroanal. Chem. 59, 41 (1975).

    Article  CAS  Google Scholar 

  45. P. A. Kohl, S. N. Frank, and A. J. Bard, J. Electrochem. Soc. 124, 225 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Szklarczyk, M. (1992). Photoelectrocatalysis. In: Murphy, O.J., Srinivasan, S., Conway, B.E. (eds) Electrochemistry in Transition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9576-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9576-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9578-6

  • Online ISBN: 978-1-4615-9576-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics