Skip to main content

Quantum-Mechanical Formalisms of Electron Transfer Reactions at Electrode—Electrolyte Interfaces

  • Chapter
Electrochemistry in Transition
  • 678 Accesses

Abstract

A quantum-mechanical theory of electron transfer processes at a metal electrode/electrolyte interface was originated by Gurney(1) in 1931. According to this theory, the electrochemical electron transfer reaction at an electrode metal involves the tunneling of electrons across the interfacial barrier to the activated ions in solution. This approach of Gurney was later named molecular theory and was further developed by Butler,(2) Gerischer,(3,4) Christov,(5–7) Bockris and co-workers,(8–12) Schmickler,(13,14) Khan and co-workers,(15–19) and Ovchinnikov and Benderskii.(20)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Gurney, Proc. Roy. Soc. (London), Ser. A 134, 137 (1931).

    Article  Google Scholar 

  2. J. A. V. Butler, Proc. Roy. Soc. (London), Ser. A 157, 423 (1936).

    Article  CAS  Google Scholar 

  3. H. Gerischer, Z. Phys. Chem. 26, 223 (1960); 29, 325 (1960).

    Article  CAS  Google Scholar 

  4. H. Gerischer, Z. Phys. Chem. 27, 48 (1961).

    Article  CAS  Google Scholar 

  5. S. G. Christov, Electrochim. Acta 4, 306 (1961).

    Article  Google Scholar 

  6. S. G. Christov, Electrochim. Acta 9, 575 (1964).

    Article  Google Scholar 

  7. S. G. Christov, J. Res. Inst. Catal. Hokkaido Univ. 16, 169 (1968).

    Google Scholar 

  8. J. O’M. Bockris and D. B. Matthews, Proc. Roy. Soc. (London), Ser. A 292, 479 (1966).

    Article  CAS  Google Scholar 

  9. J. O’M. Bockris and D. B. Matthews, J. Phys. Chem. 44, 298 (1966).

    Article  CAS  Google Scholar 

  10. J. O’M. Bockris and S. Srinivasan, J. Electrochem. Soc. 111, 853 (1964).

    Article  CAS  Google Scholar 

  11. J. O’M. Bockris, S. Srinivasan, and D. B. Matthews, Discuss. Faraday Soc. 39, 239 (1965).

    Article  Google Scholar 

  12. J. O’M. Bockris and D. B. Matthews, Electrochim. Acta 11, 143 (1966).

    Article  CAS  Google Scholar 

  13. W. Schmickler, J. Electroanal. Chem. 82, 65 (1977).

    Article  CAS  Google Scholar 

  14. W. Schmickler, J. Electroanal. Chem. 84, 203 (1977).

    Article  CAS  Google Scholar 

  15. S. U. M. Khan, R Wright, and J. O’M. Bockris, Electrokhimiya 13, 914 (1977).

    CAS  Google Scholar 

  16. M. S. Tunuli and S. U. M. Khan, J. Phys. Chem. 89, 4667 (1985).

    Article  CAS  Google Scholar 

  17. M. S. Tunuli and S. U. M. Khan, Trans. Faraday Soc. 82, 2911 (1986).

    Article  CAS  Google Scholar 

  18. M. S. Tunuli and S. U. M. Khan, J. Phys. Chem. 91, 3474 (1987).

    Article  CAS  Google Scholar 

  19. Z. Zhou and S. U. M. Khan, J. Phys. Chem. 93, 5292 (1989).

    Article  CAS  Google Scholar 

  20. A. Ovchinnikov and V. A. Benderskii, J. Electroanal. Chem. 100, 563 (1979).

    Article  CAS  Google Scholar 

  21. J. Weiss, J. Phys. Chem. 19, 1066 (1951).

    CAS  Google Scholar 

  22. W. Libby, J. Phys. Chem. 56, 863 (1952).

    Article  CAS  Google Scholar 

  23. R. Platzmann and J. Frank, Z. Phys. 138, 411 (1958).

    Google Scholar 

  24. R. Kubo and Y. Toyozawa, Prog. Theor. Phys. 138, 411 (1955).

    Google Scholar 

  25. R. A. Marcus, J. Chem. Phys. 24, 966 (1956); 26, 867 (1957).

    Article  CAS  Google Scholar 

  26. R. A. Marcus, J. Chem. Phys. 38, 1353, 1858 (1963); 43, 679 (1965).

    Google Scholar 

  27. V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR 124, 123 (1959).

    CAS  Google Scholar 

  28. V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR 133, 158 (1960); Collect. Czech. Chem. Commun. 26, 193 (1961).

    Google Scholar 

  29. R. R. Dogonadze, A. M. Kuznetsov, and V. G. Levich, Electrochim. Acta 13, 1025 (1968).

    Article  CAS  Google Scholar 

  30. R. R. Dogonadze, in: Reactions of Molecules at Electrodes (N. S. Hush, ed.), Chapter 3, Wiley Interscience, New York (1971).

    Google Scholar 

  31. M. Lax, J. Chem. Phys. 20, 1752 (1952).

    Article  CAS  Google Scholar 

  32. S. I. Parker, Investigations of Electronic Theories of Crystals (Russian ed.), Fizmatgiz, Moscow (1951).

    Google Scholar 

  33. R. R. Dogonadze, in: Comprehensive Treatise of Electrochemistry, Vol. 7 (B. E. Conway, J. O’M. Bockris, E. Yeager, S. U. M. Khan, and R. E. White, eds.). Chapter 1, Plenum Press, New York (1983).

    Google Scholar 

  34. J. Ulstrup, Charge Transfer Processes in Condensed Media, Springer, Berlin (1979).

    Book  Google Scholar 

  35. S. U. M. Khan, Appl. Phys. Commun. 4, 149 (1984).

    CAS  Google Scholar 

  36. B. Goodman, A. W. Lawson, and L. I. Schiff, Phys. Rev. 71, 191 (1946).

    Article  Google Scholar 

  37. J. O’M. Bockris and D. B. Matthews, Electrochim. Acta 11, 143 (1966).

    Article  CAS  Google Scholar 

  38. J. O’M. Bockris and S. U. M. Khan, Quantum Electrochemistry, Chapter 4, Plenum Press, New York (1979).

    Google Scholar 

  39. E. Merzbacher, Quantum Mechanics, John Wiley & Sons, New York (1970).

    Google Scholar 

  40. P. George and J. S. Griffith, in: The Enzymes, Vol. 1, (P. D. Boyer, H. Lardy, and K. Myrback, eds.), p. 347, Academic Press, New York (1956).

    Google Scholar 

  41. T. F. Moran and W. H. Hamill, J. Chem. Phys. 39, 1413 (1963).

    Article  CAS  Google Scholar 

  42. D. R. Bates, Chem. Phys. Lett. 82, 396 (1981).

    Article  CAS  Google Scholar 

  43. S. U. M. Khan, J. Phys. Chem. 92, 2541 (1988).

    Article  CAS  Google Scholar 

  44. M. A. Habib and J. O’M. Bockris, J. Bioelectricity 3, 247 (1984).

    CAS  Google Scholar 

  45. M. A. Habib and J. O’M. Bockris, J. Biophys. 14, 31 (1986).

    Google Scholar 

  46. W. Schmickler, J. Electroanal. Chem. 83, 387 (1977).

    Article  CAS  Google Scholar 

  47. W. Schmickler and J. Ulstrup, J. Chem. Phys. 19, 217 (1977).

    CAS  Google Scholar 

  48. S. U. M. Khan and W. Schmickler, J. Electroanal. Chem. 134, 167 (1982).

    Article  CAS  Google Scholar 

  49. M. D. Newton, Int. J. Quantum. Chem. Quantum Chem. Symp. 14, 363 (1980); Chem. Rev. 91, 767 (1991).

    CAS  Google Scholar 

  50. S. U. M. Khan and Z. Y. Zhou, J. Chem. Phys., 93, 8808 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Khan, S.U.M. (1992). Quantum-Mechanical Formalisms of Electron Transfer Reactions at Electrode—Electrolyte Interfaces. In: Murphy, O.J., Srinivasan, S., Conway, B.E. (eds) Electrochemistry in Transition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9576-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9576-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9578-6

  • Online ISBN: 978-1-4615-9576-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics