Skip to main content

Abstract

During mammalian development an important aspect of cell metabolism is that related with the pathway of energy provision, because, in one way or another, the rest of metabolic pathways and cellular functions depend on an efficient supply of energy. It is in the mitochondria where energy is generated by the oxidation of cellular substrates into its useful form of ATP. Cells devoid of, or which contain a poorly developed mitochondria, rely on the less efficient anaerobic glycolysis for harnessing their ATP needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.B. Burch, D.H. Lowry, A.M. Kuhlman, J. Skerjance, E.J. Diamant, S. R. Lowry and P.Von Dippe, Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver, J.Biol.Chem. 238: 2267 (1963).

    PubMed  CAS  Google Scholar 

  2. F.A. Hommes, Energetic aspects of late fetal and neonatal metabolism, in: “Normal and Pathological Development of Energy Metabolism”, F.A. Hommes and C.J.Van den Berg, eds. Academic Press, London, pp. 1 (1975).

    Google Scholar 

  3. F.A. Hommes, G.P.B. Kraan and R. Berger, The regulation of ATP synthesis in fetal rat liver, Enzyme 1: 351 (1973).

    Google Scholar 

  4. E. Chico, J.S. Olavarria and I.Nunez de Castros, Crabtree effect induced by fructose in hepatocytes isolated from developing rats, Enzyme 24: 209 (1979).

    PubMed  CAS  Google Scholar 

  5. R. Berger and F.A. Hommes, Regulation of pyruvate oxidation in mitochondria isolated from fetal and adult rat liver, Biochim. lBiophys.Acta. 314: 1 (1973).

    Article  CAS  Google Scholar 

  6. H. P. Rohr, A. Wirz, L.C. Henning, V.N. Riede and L. Bianchi, Morphometric analysis of the rat liver cell in the perinatal period, Lab.Invest. 24: 128 (1971).

    PubMed  CAS  Google Scholar 

  7. C.A. Lang and G. H. Herber, Quantitative comparison of the mitochondrial populations in the livers of newborn and weaning rats, Dev.Biol. 29: 176 (1972).

    Article  PubMed  CAS  Google Scholar 

  8. H. David, Quantitative and qualitative changes in the mitochondria in hepatocytes during postnatal development of male rats, Exp.Pathol. 17: 359 (1979).

    CAS  Google Scholar 

  9. J.R. Aprille, Perinatal development of mitochondria in rat liver, in: “Mitochondrial Physiology and Pathology”, G. Fiskum, ed., Van Nostrand Reinhold Co., New York, pp. 66 (1986).

    Google Scholar 

  10. J.K. Pollak and C.G. Duck-Chong, Changes in rat liver mitochondria and endoplasmic reticulum during development and differentiation, Enzyme 15: 139 (1973).

    PubMed  CAS  Google Scholar 

  11. M. Hallman, Changes in mitochondrial respiratory chain proteins during perinatal development. Evidence of the importance of environmental oxygen tension, Biochim.Biophys. Acta 253: 360 (1971).

    Article  PubMed  CAS  Google Scholar 

  12. T. Nakazawa, K. Asami, H. Suzuki and O. Yukawa, Appearance of an energy conservation system in rat liver mitochondria during development, J.Biochem. 73: 397 (1973).

    PubMed  CAS  Google Scholar 

  13. J.K. Pollak, The maturation of the inner membrane of fetal rat liver mitochondria, Biochem. J. 150: 477 (1975).

    PubMed  CAS  Google Scholar 

  14. J.R. Aprille and G.K. Asimakis, Postnatal development of rat liver mitochondria: State 3 respiration, adenine nucleotide translocase activity, and the net accumulation of adenine nucleotides, Arch. Biochem.Biophys. 201: 564 (1980).

    Article  PubMed  CAS  Google Scholar 

  15. C. Valcarce, R.M. Navarrete, P. Encabo, E. Loeches, J. Satrustegui and J.M. Cuezva, Postnatal development of rat liver mitochondrial functions: The roles of protein synthesis and of adenine nucleotides, J.Biol.Chem. 263: 7767 (1988).

    PubMed  CAS  Google Scholar 

  16. C. Valcarce, J.M. Cuezva and J.M. Medina, Increased gluconeogenesis in the rat at term gestation, Life Sciencies 37: 553 (1985).

    Article  CAS  Google Scholar 

  17. C. Valcarce, J.M. Cuezva and J.M. Medina, Phosphoenolpyruvate carboxykinase activity in the kidney of pregnant rats during late gestation, Biochem.Soc.Trans. 12: 789 (1984).

    CAS  Google Scholar 

  18. J.M. Cuezva, C. Valcarce, M. Chamorro, A. Franco and F. Mayor, Alanine and actate as gluconeogenic substrates during late gestation, FEBS Lett. 194: 219 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. P.C. Foster and E. Bailey, Changes in the activities of the enzymes of hepatic fatty acid oxidation during development of the rat, Biochem. J. 154: 49 (1976).

    PubMed  CAS  Google Scholar 

  20. J. Girard and P. Ferré, Metabolic and hormonal changes around birth, in: “The Biochemical Development of the Fetus and Neonate”, C.T. Jones, ed., Elsevier Biomedical Press, Amsterdam, pp. 517 (1982).

    Google Scholar 

  21. F. Mayor and J.M. Cuezva, Hormonal and metabolic changes in the perinatal period, Biol.Neonate 48: 185 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. J.K. Pollak and R. Sutton. The differentiation of animal mitochondria during development, Trends Biochem.Sei. 5: 23 (1980).

    Article  CAS  Google Scholar 

  23. K.D. Garlid and A.D. Beavis, Evidence for the existence of an inner membrane anion channel in mitochondria, Biochim. Biophys. Acta 853: 187 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. R. Sutton and J.K. Pollak, The increasing adenine nucleotide concentration of rat liver mitochondria during neonatal development, Differentiation 12: 15 (1978).

    Article  PubMed  CAS  Google Scholar 

  25. R. Hay, P. Bohni and S. Gasser. How mitochondria import protein, Biochim. Biophys.Acta 779: 65 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. A. Tzagoloff and A.M. Myers, Genetics of mitochondrial biogenesis, Ann. Rev.Biochem. 55: 249 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. D.E. Hale and J.R. Williamson, Developmental changes in the adenine nucleotide translocase in the guinea pig, J.Biol.Chem. 259: 8737 (1984).

    PubMed  CAS  Google Scholar 

  28. L. Bagetto, D. C. Gautheron and C. Godinot, Effects of ATP on various steps controlling the rate of oxidative phosphorylation in newborn rat liver mitocondria, Arch. Biochem.Biophys. 232: 670 (1984).

    Article  Google Scholar 

  29. N. Pfanner and W. Neupert, Transport of proteins into mitochondria: a potassium diffusion potential is able to drive the import of ADP/ATP carrier, EMBO J. 4: 2819 (1985).

    PubMed  CAS  Google Scholar 

  30. Y. Kagawa, Proton motive ATP synthesis, in: “Bionergetics”, New Comprehensive Biochemistry, L. Ernster, ed., Elsevier/North-Ho11and Biomedical Press, Amsterdam, vol. 9, pp. 149 (1984).

    Google Scholar 

  31. J.K. Pollak and R. Sutton, The transport and accumulation of adenine nucleotides during mitochondrial biogenesis, Biochem. J. 192: 75 (1980).

    PubMed  CAS  Google Scholar 

  32. J. Austin and J.R. Aprille, Carboxyatractyloside-insensitive influx and efflux of adenine nucleotides in rat liver mitochondria, J.Biol. Chem. 259: 154 (1984).

    PubMed  CAS  Google Scholar 

  33. J. M. Izquierdo, A.M. Luis and J.M. Cuezva, Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the β-subunit of the mitochondrial Fi-ATPase complex, J. Biol.Chem. (in press) (1990).

    Google Scholar 

  34. C. Hackenbrock, Ultrastructural basis for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria, J.Cell.Biol. 30: 269 (1966).

    Article  PubMed  CAS  Google Scholar 

  35. C. Hackenbrock, Untrastruetural basis for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria, J.Cell.Biol. 37: 345 (1968).

    Article  PubMed  CAS  Google Scholar 

  36. N.E. Weber and P.V. Blair, Ultrastructural studies of beef mitochondria. II. Adenine nucleotide induced modifications of mitochondrial morphology, Biochem.Biophys.Res.Commun. 41: 821 (1970).

    Article  PubMed  CAS  Google Scholar 

  37. B. Scherser and M. Klingenberg, Demonstration of the relationship between the adenine nucleotide carrier and the structural changes of mitochondria as induced by adenosine 5’-diphosphate, Biochemistry 13: 161 (1974).

    Article  Google Scholar 

  38. P. Lundberg, ATP and phosphate induce configurational changes of submitochondrial particles, Biochim. Biophys. Acta 376: 458 (1975).

    Article  PubMed  CAS  Google Scholar 

  39. S.F. Jakovcic, K. Haddock, G.S. Geta, M. Rabinowitz and H. Swift, Mitochondrial development in liver of foetal and newborn rats, Biochem. J. 121: 341 (1971).

    PubMed  CAS  Google Scholar 

  40. G. P. Brierley, The uptake and extrusion of monovalent cations by isolated heart mitochondria, Mol.Cell.Biochem. 10: 41 (1976).

    Article  PubMed  CAS  Google Scholar 

  41. K.D. Garlid, Unmasking the mitochondrial K /H exchanger: tetraethyl-ammoniurn-induced K loss, Biochem.Biophys. Res. Commun. 87: 842 (1979).

    Article  PubMed  CAS  Google Scholar 

  42. K.D. Garlid, On the mechanism of regulation of the mitochondrial K /H exchanger, J.Biol.Chem. 255: 11273 (1980).

    PubMed  CAS  Google Scholar 

  43. R.S. Dordick, G.P. Brierley and K.D. Garlid, On the mechanism of A23187-induced potassium efflux in rat liver mitochondria, J. Biol.Chem. 255: 10299 (1980).

    PubMed  CAS  Google Scholar 

  44. G.P. Brierley, M. S. Jurkowitz, T. Farooqui and D. W. Jung, K+/H+ antiport in heart mitochondria, J.Biol.Chem. 259: 14672 (1984).

    PubMed  CAS  Google Scholar 

  45. A. Panov, S. Flippova and V. Lyakhovich, Adenine nucleotide translocase as a site of regulation by ADP of the rat liver mitochondria permeability to H and K ions, Arch.Biochem.Biophys. 199: 420 (1980).

    Article  PubMed  CAS  Google Scholar 

  46. A.P. Halestrap, The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism, Biochim. Biophys. Acta 973: 355 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. E.C. Slater, J.A. Berder and M.A. Herweijer, A hypothesis for the mechanism of respiratory-chain phosphorylation not involving the eletrochemical gradient of protons as obligatory intermediate, Biochim.Biophys. Acta 811: 217 (1985).

    Article  PubMed  CAS  Google Scholar 

  48. J.M. Cuezva and J.M. Medina, Adenine nucleotide concentrations in liver of fetal rats. Neonatal changes in the premature newborn, Rev. Esp. Flsiol. 38: 161 (1982).

    CAS  Google Scholar 

  49. J.M. Cuezva, C.I. Chitra and M.S. Patel, The newborn of diabetic rat II. Impaired gluconeogenesis in the postnatal period, Pediatr.Res. 16: 638 (1982).

    Article  PubMed  CAS  Google Scholar 

  50. E. Serrano, A.M. Luis, P. Encabo, A. Alconada, L. Ho, M.S. Patel and J.M. Cuezva, Rapid postnatal induction of the pyruvate dehydrogenase complex in rat liver mitochondria, Annals N. Y.Acad.Sei. 573: 412 (1989).

    Article  Google Scholar 

  51. D.G. Nicholls and R. Locke, Brown adipose tissue in the mammalian neonate, Physiol. Rev. 64: 1 (1984).

    PubMed  CAS  Google Scholar 

  52. J. Nedergaard, E. Connolly and B. Cannon, Thermogenic mechanisms in brown fat: “Brown Adipose Tissue”, P. Trayhurn and D.G. Nicholls, eds., Edward Arnold Ltd., London, pp. 152 (1986).

    Google Scholar 

  53. D. Ricquier, F. Bovillaud, P. Toumelin, G. Mory, R. Bazin, J. Arch and L. Penicaud, Expression of uncoupling protein mRNA in thermogenic or weakly thermogenic brown adipose tissue: Evidence for a rapid β-adrenoreeeptor-mediated and transcriptionally regulated step during activation of thermogenesis, J.Biol.Chem. 261: 13905 (1986).

    PubMed  CAS  Google Scholar 

  54. A.M. Luis and J.M. Cuezva, Rapid postnatal changes in F1-ATPase proteins and in the uncoupling protein in brown adipose tissue mitochondria of the newborn rat, Biochem.Biophys.Res. Commun. 159: 216 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. J.M. Cuezva, M. Benito, F.J. Moreno and J.M. Medina, Prematurity in rat. II. Effect of hypothermia, Biol.Neonate. 37: 218 (1980).

    Article  PubMed  CAS  Google Scholar 

  56. E.D. Saggerson, T.W.J. McAllister and H. Baht, Lipogenesis in rat brown adipocytes, Biochem. J. 251: 701 (1988).

    PubMed  CAS  Google Scholar 

  57. D. Ricquier, G. Mory, F. Bovillaud, J. Thibault and J. Wissenbach, Rapid increase of mitochondrial uncoupling protein and its mRNA in stimulated brown adipose tissue, FEBS Lett. 178: 240 (1984).

    Article  PubMed  CAS  Google Scholar 

  58. A. Jacobsson, U. Stadler, M.A. Glotzler and L.P. Kozak, Mitochondrial uncoupling protein from mouse brown fat: Molecular cloning, genetic mapping and mRNA expression, J.Biol.Chem. 260: 16250 (1985).

    PubMed  CAS  Google Scholar 

  59. J.M. Cuezva, F.J. Moreno and J.M. Medina, Prematurity in the rat. I. Fuels and gluconeogenic enzymes, Biol.Neonate 88 (1980).

    Google Scholar 

  60. J.M. Cuezva, F.J. Moreno and J.M. Medina, Blood oxygen concentrations in premature newborn rats during the early neonatal period, IRCS Med. Sei.Biochem. 39: 644 (1981).

    Google Scholar 

  61. J.M. Cuezva and J.M. Medina, Prematurity in the rat, III. Effect of oxygen supply, Biol.Neonate 39: 70 (1981).

    Article  PubMed  CAS  Google Scholar 

  62. J.M. Medina, J.M. Cuezva and F. Mayor, Non-gluconeogenic fate of lactate during the early neonatal period in the rat, FEBS Lett. 114: 132 (1980)

    Article  PubMed  CAS  Google Scholar 

  63. J.M. Cuezva, C. Valcarce and J.M. Medina, Substrate availability for maintenance of energy homeostasis in the inmediate postnatal period of the fasted newborn rat, in.: “The Physiological Development of the Fetus and Newborn”, C.T. Jones and P.W. Nathanieslz, eds., Academic Press, London, pp. 63 (1985).

    Google Scholar 

  64. E. Fernández, C. Valcarce, J.M. Cuezva and J.M. Medina, Postnatal hypoglycemia and gluconeogenesis in the newborn rat, Biochem. J. 214: 5250 (1983).

    Google Scholar 

  65. J. H. Oppenheimer and H.H. Samuels, “Molecular Basis of Thyroid Hormone Action”, Academic Press Inc., New York, (1983).

    Google Scholar 

  66. H.H. Samuels, B.M. Forman, Z.D. Horowitz and Z.S. Ye, Regulation of gene expression by thyroid hormone, J.Clin.Invest 81: 957 (1988).

    Article  PubMed  CAS  Google Scholar 

  67. M.D. Brand and M.P. Murphy, Control of electron flux through the respiratory chain in mitochondria and cells, Biol.Rev. 62: 141 (1987).

    Article  PubMed  CAS  Google Scholar 

  68. R.P. Hafner, Thyroid hormone uptake into the cell and its subsequent localization to the mitochondria, FEBS Lett. 224:251–256 (1987).

    Article  PubMed  CAS  Google Scholar 

  69. K. Sterling, M.A. Brener and T. Sakurada, Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo, Science 210: 340 (1980).

    Article  PubMed  CAS  Google Scholar 

  70. K. Sterling, Thyroid hormone action at the cell level, N.Engl.J.Med. 300: 117 (1979).

    Article  PubMed  CAS  Google Scholar 

  71. N. M. Gadaleta, M. Renis, G.R. Minervini, E. Serra, T. Bleve, A. Giovine, G. Zacheo and A. M. Giuffrida, Effect of hypothyroidism on the biogenesis of free mitochondria in the cerebral hemispheres and in cerebellum of rat during postnatal development, Neurochem.Res. 10: 163 (1985).

    Article  PubMed  CAS  Google Scholar 

  72. C.A. Batie and M.A. Verity, Membrane enzyme development in nerve ending mitochondria during neonatal hypothyroidism, Dev.Neurosei. 2: 139 (1979).

    Article  Google Scholar 

  73. B.D. Nelson, A. Mutvei and V. Joste, Regulation of biosynthesis of the rat liver inner mitochondrial membrane by thyroid hormone, Arch. Biochem.Biophys. 228: 41 (1984).

    Article  PubMed  CAS  Google Scholar 

  74. H.J. Seitz, M.J. Müller and S. Soboll, Rapid thyroid hormone effect on mitochondrial and cytosolic ATP/ADP ratios in the intact liver cell, Biochem. J. 227: 149 (1985).

    PubMed  CAS  Google Scholar 

  75. W.E. Thomas and J. Mowbray, Receptor mediated amplification control of oxidative phosphorylation by tri-iodothyronine, Biochem.Soc.Trans. 15: 669 (1987).

    CAS  Google Scholar 

  76. K. Sterling, Direct thyroid hormone activation of mitochondria: The role of adenine nucleoside translocase, Endocrino1ogy 119: 292 (1986).

    Article  CAS  Google Scholar 

  77. J.E. Silva and P.R. Larsen, Comparison of iodothyronine 5’-deiodinase and other thyroid-hormone-dependent enzyme activities in the cerebral cortex of hypothyroid neonatal rat, J. Clin.Invest. 70: 1110 (1982).

    Article  PubMed  CAS  Google Scholar 

  78. J.M. Cuezva, E.S. Burkett, D.S. Kerr, H.M. Rodman and M. S. Patel, The newborn of diabetic rat, I. Hormonal and metabolic changes” in the postnatal period, Pediatr.Res. 16: 632 (1982).

    Article  PubMed  CAS  Google Scholar 

  79. J.M. Cuezva and M.S. Patel, Disturbances of fetal liver carbohydrate metabolism and perinatal glucose homeostasis, Biochem.Soc.Trans. 13: 83 (1985).

    PubMed  CAS  Google Scholar 

  80. J.M. Cuezva and M.S. Patel, Effect of glucose and insulin administration on hepatic adenylate energy charge and the cytosolic redox state in the neonates of normal and insulin-treated diabetic rats, Biol. Neonate 48: 221 (1985).

    Article  PubMed  CAS  Google Scholar 

  81. J.R. Aprille and M. T. Nosek, Neonatal hypoxia or maternal diabetes delays postnatal development of liver mitochondria, Pediatr.Res. 21: 266 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Cuezva, J.M., Valcarce, C., Luis, A.M., Izquierdo, J.M., Alconada, A., Chamorro, M. (1990). Postnatal Mitochondrial Differentiation in the Newborn Rat. In: Cuezva, J.M., Pascual-Leone, A.M., Patel, M.S. (eds) Endocrine and Biochemical Development of the Fetus and Neonate. Reproductive Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9567-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9567-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9569-4

  • Online ISBN: 978-1-4615-9567-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics