Skip to main content

Electrochemical Studies on the Generation of Active Oxygen Species in Biological Systems with the Use of Mediators

  • Chapter
Redox Chemistry and Interfacial Behavior of Biological Molecules
  • 158 Accesses

Abstract

The process of the reduction of oxygen to water in the mitochondria has been widely studied in the course of time. It is generally accepted that oxygen is reduced by cytochrome oxidase, the terminal enzyme in the electron transport chain, in a single 4-electron 4-proton step. However, the discussion about the true mechanism of the process is still not closed. The electrochemical reduction of oxygen has also been studied extensively by direct methods1 as well as indirectly in the presence of mediators2–4. At the electrode the reduction of oxygen proceeds in two 2-electron steps. This process would imply hydrogen peroxide as the first reduction product, which is then reduced to water in the second step. In the presence of one specific porphyrin mediator, practically no hydrogen peroxide was found, which in this case could indicate that a direct reduction of oxygen to water has taken place5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Yeager in “Mechanisms of Electrochemical Reactions on Nonmetallic Surfaces”, NBS special publication 455., (1976), p. 203.

    Google Scholar 

  2. T. Kuwana, M. Fujuhira, K. Sunakawa and T. Osa, J. Electroanal. Chem., 88, 299 (1978).

    Article  CAS  Google Scholar 

  3. A. Bettelheim, R.J.H. Chan and R. Kuwana, J. Electroanal. Chem., 99, 391 (1979).

    Article  CAS  Google Scholar 

  4. A. Bettelheim and T. Kuwana, Anal. Chem., 51, 2257 (1979).

    Article  CAS  Google Scholar 

  5. J.P. Collman, M. Marocco, P. Denisevich, C. Koval and F.C. Anson, J. Electroanal. Chem., 101, 117 (1979).

    Article  CAS  Google Scholar 

  6. D.F. Wilson, Bioelectrochem. Bioenerg., 18, 51 (1987).

    Article  CAS  Google Scholar 

  7. J.A. Farrington, M. Ebert, E.J. Land and K. Fletcher, Biochem. Biophys. Acta, 314, 372 (1973).

    Article  CAS  Google Scholar 

  8. D.A. Rowley and B. Halliwell, FEBS Letters, 142, 39 (1982).

    Article  CAS  Google Scholar 

  9. S. Kwee, Bioelectrochem. Bioenerg., 18, 79 (1987).

    Article  CAS  Google Scholar 

  10. R. Szentirmay and T. Kuwana, Anal. Chem., 50, 1879 (1978).

    Article  CAS  Google Scholar 

  11. J.O.D. Coleman, H.A.O. Hill, N.J. Walton and F.R. Whatley, FEBS Letters, 154, 319 (1983).

    Article  CAS  Google Scholar 

  12. S. Kwee and H. Lund, Biochem. Biophys. Acta, 297, 285 (1973).

    Article  CAS  Google Scholar 

  13. F. Bohlman, B., 85, 390 (1952).

    Google Scholar 

  14. V. Merz and C. Ris, B., 20, 1190 (1987).

    Google Scholar 

  15. A.L. Smith in “Methods in Enzymology”, Vol. X, R.W. Estabrook and M.E. Pullman, Eds., Acad. Press, New York, (1967), p 81.

    Google Scholar 

  16. C.T. Gregg in “Methods in Enzymology”, Vol. X, R.W. Estabrook and M.E. Pullman, Eds., Acad. Press, New York, (1967), p. 181.

    Google Scholar 

  17. O.H. Lowry, N.J. Rosebrough, N.J. Farr, A.L. and A.J. Randall, J. Biol. Chem., 193, 265 (1951).

    CAS  Google Scholar 

  18. J.N. Williams Jr., Arch. Biochem. Biophys., 107, 537 (1964).

    Article  CAS  Google Scholar 

  19. S. Kwee in “Chemistry and Biology of Pteridines”, W. Pfleiderer, Ed., W. de Gruyter, Berlin, (1976), p. 671.

    Google Scholar 

  20. R.C. Long, F.M. Hawkridge and C.R. Hartzell, J. Electroanal. Chem., 198, 89 (1986).

    Article  CAS  Google Scholar 

  21. S. Kwee, Bioelectrochem. Bioenerg., 16, 99 (1986).

    Article  CAS  Google Scholar 

  22. H. Rembold and K. Buff, Eur. J. Biochem., 28, 586 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kwee, S. (1988). Electrochemical Studies on the Generation of Active Oxygen Species in Biological Systems with the Use of Mediators. In: Dryhurst, G., Niki, K. (eds) Redox Chemistry and Interfacial Behavior of Biological Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9534-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9534-2_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9536-6

  • Online ISBN: 978-1-4615-9534-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics